• Title/Summary/Keyword: Mooring Analysis

Search Result 319, Processing Time 0.023 seconds

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack (긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동)

  • Won, Deok Hee;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.401-410
    • /
    • 2017
  • This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

Numerical Analysis on the Pressure Distributions around a Circular Cylinder by Control Rods (제어봉에 의한 원형실린더 주위의 압력분포에 관한 수치해석)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.485-490
    • /
    • 2007
  • The purpose in having a control rod on a buoy system is to control the motion of it. The system may be composed entirely of a single circular cylinder and a long mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference. then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based on the cylinder diameter(D=50mm) to predict the performance of the body and the 2 frame particle tracking method Iud been used to obtain the velocity distribution in the flow field. 50mm circular cylinder Iud been used during the whole experiments and measured results had been compared with each other.

Air-gap effect on life boat arrangement for a semi-submersible FPU

  • Kim, Mun-Sung;Park, Hong-Shik;Jung, Kwang-Hyo;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.487-495
    • /
    • 2016
  • In the offshore project such as semi-submersible FPU and FPSO, the free fall type life boat called TEMPSC (Totally Enclosed Motor Propelled Survival Craft) has been installed for the use of an emergency evacuation of POB (People on Board) from the topside platform. For the design of life boat arrangement for semi-submersible FPU in the initial design stage, the drop height and launch angle are required fulfill with the limitation of classification society rule and Company requirement, including type of approval as applicable when intact and damage condition of the platform. In this paper, we have been performed the numerical studies to find proper arrangement for the life boats consider drop height in various environmental conditions such as wave, wind and current. In the calculations, the contributions from static and low frequency (LF) motions are considered from the hydrodynamic and mooring analysis as well as damage angle from the intact and damage stability analysis. Also, Air-gap calculation at the life boat positions has been carried out to check the effect on the life boat arrangement. The air-gap assessment is based on the extreme air-gap method includes the effect of 1st order wave frequency (WF) motions, 2nd order low frequency roll/pitch motion, static trim/heel and set down.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

A Study on the Application of Digital Twin Technology for Container Terminals (컨테이너 터미널의 디지털 트윈 기술 적용에 관한 연구)

  • Choi, Hoon-Do;Yu, Jang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.557-563
    • /
    • 2020
  • Digital Twin Technology is currently being utilized in many industries and logistics seems soon to follow that trend. Currently, technology introduction to container terminals is restrictedly developing. In reviewing the existing literature, it became clear that research on the application of Digital Twin technology for container terminals is deficient. This study fulfilled AHP and IPA analysis causing fields to adjust priority at the container terminal. The result of analysis on the urgent necessity of adjustable fields' detailed elements from Digital Twin Technology, ATC, intelligent CCTV, and container yards, and showed that they were of the highest priority level. Also, VR/AR Equipment, AYT, Smart Container, Automated Container Delivery Facility, Refrigerated/Freezer Container, Wearable Device for Port Maintenance, and Smart Buoy were reviewed in detail. Our group suggests AQC, Berth, AGV, ASC, Apron, and Automated Mooring as potentially useful Digital Twin Technologies. Finally, our research suggests the OSS equipment, intermodal linkage facility, intelligent drone, and hazardous material storage are areas of low priority.

Study on the Present Condition and Type Analysis of Rock Korean Chessboards in Korean Landscape (암각장기판의 형상 및 입지 특성에 관한 연구)

  • Jeong, Poo-Reum;Kim, Jeong-Moon;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • The objective of this study is to investigate the value of rock Korean chessboards as a corroborative evidence that go, the play culture naturalized from the past, was also performed under the pavilion of the mountain stream, and the old tree. This study executes analysis on the location and form of rock Korean chessboards, physical environment such as the position of surrounding space, the origin of the nomination, surrounding landscape, and historical significance through the research analysis of comprehensive present conditions, and highlights the position types, landscape significance, and preservation value of the rock Korean chessboards of Korea from diverse angles. The result is as follows. 1. The styles of Korean chess (將棋), which identically propagated in the representative countries of Eastern culture, Korea, China, and Japan, and modified in accordance with each country's idea and native tendency, were organized, and confirmed the Korean Go as a naturalized native culture. 2. Out of 15 rock Korean chessboards confirmed through this study, 9 (60%) were categorized as rock Korean chessboards, and 6 (40%) were categorized as stone Korean chessboards. Also, the average size of the go boards were $51cm{\times}46.6cm$, which demonstrated not much difference with present day universal go boards. The Pearson correlation coefficient between bed rock and go boards were 0.647, demonstrating a relatively high correlation; the research subject of rock go boards have been constructed in consideration of rationality, convenience, and the value of promotion of public welfare. 3. The results of analysis of location patterns of rock Korean chessboard showed that villages (87%), mooring (73%), plains (60%) and mountains (47%). The most frequent location pattern is mooring and village, and these two factors played the most important role in determining the location of the rock Korean chessboard.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

A Study on the Change of Current in the Vicinity of Mokpo Harbor and Its Impact on Ship Operation due to the Discharge through Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑 및 영암-금호방조제의 방류에 의한 목포항 주변수역의 유동변화 및 선박운용에 미치는 영향에 관한 연구)

  • 정대득;이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.133-146
    • /
    • 1999
  • Mokpo coastal area is connected to the adjacent a long river and two large basins. It is essential for port planning coastal zone management and environmental impact study to analyze the data related to the ship operation and variation of current and water quality due to the development of water area including dredging reclamation and estuary barrage. The Yongsan river estuary weir and Yongam-Kumho basins discharge much of water through water gates for the purpose of flood control and prohibit salt intrusion at the inland fresh water area. To meet this purpose discharge through the gates have been done at the period of maximum water level difference between inner river and sea level. This discharged water may cause the changes of current pattern and other environmental influences in the vicinity and inner area of semi-closed Mokpo harbor. In this study ADI method is applied to the governing equation for the analysis of the changes on current pattern due to discharged water. As the results of this study it is known that the discharging operation causes many changes including the increase of current velocity at the front water area at piers approaching passage and anchorages. Discussion made on the point of problems such as restricted maneuverability and the safety of morred vessels at pier and anchorage. To minimize this influence the linked gate operation discharging warning system and laternative mooring system are recommended.

  • PDF