• Title/Summary/Keyword: Moore-Penrose pseudoinverse

Search Result 3, Processing Time 0.014 seconds

A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability (화학반응식 균형과 안정성을 위한 새로운 유사 역행렬법)

  • Risteski, Ice B.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.223-238
    • /
    • 2008
  • this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices.

SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES

  • Miladinovic, Marko;Stanimirovic, Predrag
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.33-48
    • /
    • 2011
  • The notion of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,s)}$ of type s, whose nonzero elements are generalized Fibonacci numbers, is introduced in the paper [23]. Regular case s = 0 is investigated in [23]. In the present article we consider singular case s = -1. Pseudoinverse of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,-1)}$ is derived. Correlations between the matrix $\mathcal{F}_n^{(a,b,-1)}$ and the Pascal matrices are considered. Some combinatorial identities involving generalized Fibonacci numbers are derived. A class of test matrices for computing the Moore-Penrose inverse is presented in the last section.

Solution Space of Inverse Differential Kinematics (역미분기구학의 해 공간)

  • Kang, Chul-Goo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.230-244
    • /
    • 2015
  • Continuous-path motion control such as resolved motion rate control requires online solving of the inverse differential kinematics for a robot. However, the solution space of the inverse differential kinematics related to Jacobian J is not well-established. In this paper, the solution space of inverse differential kinematics is analyzed through categorization of mapping conditions between joint velocities and end-effector velocity of a robot. If end-effector velocity is within the column space of J, the solution or the minimum norm solution is obtained. If it is not within the column space of J, an approximate solution by least-squares is obtained. Moreover, this paper introduces an improved mapping diagram showing orthogonality and mapping clearly between subspaces, and concrete examples numerically showing the concept of several subspaces. Finally, a solver and graphics user interface (GUI) for inverse differential kinematics are developed using MATLAB, and the solution of inverse differential kinematics using the GUI is demonstrated for a vertically articulated robot.