• 제목/요약/키워드: Moore-Penrose pseudoinverse

검색결과 3건 처리시간 0.014초

화학반응식 균형과 안정성을 위한 새로운 유사 역행렬법 (A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability)

  • Risteski, Ice B.
    • 대한화학회지
    • /
    • 제52권3호
    • /
    • pp.223-238
    • /
    • 2008
  • 이 논문에 화학반응식 균형을 맞추기 위한 새로운 유사 역행렬법이 기술되었다. 여기에 제공된 방법은 Moore-Penrose 유사 역행렬을 사용한 Diophantin 행렬식의 해에 기초를 둔다. 방법은 전형적인 여러 화학반응식에 시험적용되었고 폭넓은 균형연구에서 모든 반응식에 매우 성공적이었다. 이 방법은 아무 제한없이 성공적으로 적용되고, 또한 새로운 화학반응식의 타당성에 대한 검증력도 있고, 만일 새식이 타당하다면 화학식 균형을 이룰 것이다. 여기서 다루어진 화학반응식들은 소수산화수를 지닌 원자를 포함하고 있다. 또한, 화학반응식의 확장된 행렬의 안정성에 대한 화학반응식의 안정성의 필요충분조건을 이 연구에 소개하였다.

SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES

  • Miladinovic, Marko;Stanimirovic, Predrag
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.33-48
    • /
    • 2011
  • The notion of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,s)}$ of type s, whose nonzero elements are generalized Fibonacci numbers, is introduced in the paper [23]. Regular case s = 0 is investigated in [23]. In the present article we consider singular case s = -1. Pseudoinverse of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,-1)}$ is derived. Correlations between the matrix $\mathcal{F}_n^{(a,b,-1)}$ and the Pascal matrices are considered. Some combinatorial identities involving generalized Fibonacci numbers are derived. A class of test matrices for computing the Moore-Penrose inverse is presented in the last section.

역미분기구학의 해 공간 (Solution Space of Inverse Differential Kinematics)

  • 강철구
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.230-244
    • /
    • 2015
  • Continuous-path motion control such as resolved motion rate control requires online solving of the inverse differential kinematics for a robot. However, the solution space of the inverse differential kinematics related to Jacobian J is not well-established. In this paper, the solution space of inverse differential kinematics is analyzed through categorization of mapping conditions between joint velocities and end-effector velocity of a robot. If end-effector velocity is within the column space of J, the solution or the minimum norm solution is obtained. If it is not within the column space of J, an approximate solution by least-squares is obtained. Moreover, this paper introduces an improved mapping diagram showing orthogonality and mapping clearly between subspaces, and concrete examples numerically showing the concept of several subspaces. Finally, a solver and graphics user interface (GUI) for inverse differential kinematics are developed using MATLAB, and the solution of inverse differential kinematics using the GUI is demonstrated for a vertically articulated robot.