• 제목/요약/키워드: Mooney-Rivlin

검색결과 64건 처리시간 0.018초

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

자동차용 횔베어링의 기동토크와 밀봉성을 고려한 립 씰의 형상 설계에 관한 연구 (Study on Geometry Design of Lip-Seal for Automobile Wheel Bearing Considering Drag Torque and Sealing Performance)

  • 허영민;이광오;심태양;강성수
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.10-16
    • /
    • 2007
  • A rubber seal for wheel bearing which has been mainly applied to car wheel supporting device is required to have both high sealing performance and drag torque. Because of severe operational conditions like infiltration of mud or splashed water, the importance of rubber seal which is aimed for leakage prevention of grease and effective blocking of foreign substances has been increasing continuously. The sealing performance of this seal depends on several factors such as materials of seal, friction conditions of contact regions and geometry of seals and so on. We have focused on the effects of geometric characteristics such as the angle of main lip, interference between lip edge and inner metallic ring. In this study, the optimization of geometric variables was performed using the finite element analysis. For the sake of finite element analysis, uniaxial tensile tests were conducted and several constants for Mooney-Rivlin's equation were obtained. According to the results of this study, mock-up bearing was made. To verify this study, drag torque and mud spray test were preformed.

유한요소해석을 통한 자동차용 글라스의 승강성능 예측 (Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis)

  • 문형일;김헌영;최천;이인혁;김도형
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1749-1755
    • /
    • 2010
  • 파워 글라스 시스템의 특성은 주로 윈도우 레귤레이터의 거동 특성과 글라스 런에 의한 저항에 의해 결정되며, 시험 결과 분석을 통해 시스템의 성능을 예측한다. 본 논문에서는 시험적인 방법의 한계를 해결하기 위해, 익스플리시트 코드를 사용한 해석적 방법을 제안하였다. 해석 모델에 사용한 글라스 런은 무니-리블린 모델을 사용하여 모델링 하였고, 다양한 조건에서의 마찰 시험을 실시하여 마찰계수를 구하였다. 또한, 윈도우 레귤레이터 파트의 메커니즘은 패스트 벨트 시스템과 슬립 링요소를 사용하여 모델링 하였고, 상승 시 발생하는 전류와 하중과의 상관관계 분석을 통해 레귤레이션 메커니즘의 신뢰성을 검증하였고, 모터의 특성을 고려하여 신뢰성 있는 글라스 상승 시간을 예측하였다.

자동차 전장 커넥터 방수 시일의 유한요소해석 (FEM Analysis of a Waterproof Seal of Automotive Electrical Connectors)

  • 한정진;황원태;김호경
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.52-58
    • /
    • 2019
  • In the case of high-voltage connectors applied to automobiles, waterproofing has become an important issue for the safety of automobiles. In this study, structural analysis is performed on silicone rubber-type waterproof seals used in the voltage connector. For the structural analysis, the tensile properties of the actual rubber seal are evaluated using a miniaturized tensile testing machine. The Mooney-Rivlin material constants of the rubber seal are determined as follows; $D_1=0$, $C_{01}=0.241$, $C_{10}=0.0142$. The analysis shows that the contact pressure at the top of the seal where the seal and male connector are in contact is approximately three times higher than that at the bottom of the seal where the seal and female connector are in contact. It is confirmed that the waterproofing performance of the rubber seal depends on the contact pressure of the seal bottom where the seal and female connector are in contact. The contact pressure for waterproofing is found to be 4.7 bar. The strain concentration of the curved part is attributed to excessive initial tension. Therefore, a redesign is recommended for uniform stress or strain distribution in the curved section of the seal in response to the stress relaxation problem due to permanent deformation.