• Title/Summary/Keyword: Montmorillonite KSF clay

Search Result 5, Processing Time 0.015 seconds

Montmorillonite KSF Clay as Novel and Recyclable Heterogeneous Catalyst for the Microwave Mediated Synthesis of Indan-1,3-Diones

  • Marvi, Omid;Giahi, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2918-2920
    • /
    • 2009
  • Various indan-1,3-dione derivatives were synthesized from the reaction of different phthalic anhydrides with diethylmalonate using montmorillonite KSF clay as a recyclable heterogeneous acidic catalyst and microwave irradiation in good yields and short reaction times.

Synthesis of Dimer Acid Methyl Ester Using Base-treated Montmorillonite (염기 처리된 montmorillonite를 이용한 다이머산 메틸에스테르의 합성)

  • Yuk, Jeong Suk;Shin, Jihoon;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2019
  • In this study, we demonstrate the effects of the acidic properties of montmorillonite (MMT), which is commonly used as a catalyst, on the conversion and selectivity of the dimer acid methyl ester (DAME) synthesis. We synthesize DAME by the dimerization of conjugated linoleic acid methyl ester (CLAME) and oleic acid methyl ester using MMT KSF. Incidentally, trimer acid methyl ester was formed as a by-product during the DAME synthesis. There is a necessity to adequately adjust the strength and quantity of the acid site to control the selectivity of DAME. Therefore, we vary the pH of the MMT acid by using various metal hydroxides. The purpose of this study is to increase the yield of monocyclic dimer acid methyl ester, which is a substance with adequate physical properties for industrial applications (e.g., lubricant and adhesive, etc.), using a heterogeneous catalyst. We report the dimerization of fatty acid methyl ester by using base treated-KSF, and apply it to conjugated soybean oil methyl ester. Then, we transmute the acid site properties of KSF, such as pH of 5 wt.% slurry KSF and various alkali metals (Li, Na, K, Ca). Characterization of base treated-KSF using a pH meter, x-ray diffraction, inductively coupled plasma-atomic emission spectrometer, Brunauer-Emmett-Teller surface analysis, and temperature-programmed desorption. We conduct an analysis of CLAME and DAME using nuclear magnetic resonance spectroscopy, gas chromatography, and gel permeation chromatography. Through these experiments, we demonstrate the effects of the acidic properties of KSF on the conversion and selectivity of the DAME synthesis, and evaluate its industrial potential by application to waste vegetable oil.

Montmorillonite Clay Catalyzed Three Component, One-Pot Synthesis of 5-Hydroxyindole Derivatives

  • Reddy, B.V. Subba;Reddy, P. Sivaramakrishna;Reddy, Y. Jayasudhan;Bhaskar, N.;Reddy, B. Chandra Obula
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2968-2972
    • /
    • 2013
  • A highly efficient and environmentally benign protocol has been developed for the first time to produce a wide range of biologically active 5-hydroxyindole derivatives using montmorillonite KSF clay as a reusable solid acid catalyst. The use of recyclable clay makes this procedure quite simple, more convenient and cost-effective.

Adsorption of Anionic Species on Clay Minerals (점토광물에 의한 음이온 화학종 흡착 특성)

  • Moon, Jeong-Ho;Choi, Choong-Ho;Ryu, Byong-Ro;Kim, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1058-1064
    • /
    • 2005
  • This research was designed to investigate the removal of anionic species, such as $F^-$, $Cl^-$ and ${NO_3}^-$, by adsorption on the clay minerals. Bentonite, $Ca^{2+}$ or $Na^+$ ion exchanged bentonite and montmorillonite, such as KSF and K10 from Sigma Aldrich, were used as the adsorbent. The component of five inorganic adsorbent was analyzed by XRF and XRD and the concentration of anion was measured by ion chromatography. From the experimental results, it was shown that the adsorption equilibrium was attained after 8-24 hours. For the amount of 6 g of each adsorbent, the adsorption capacities of $F^-$ and ${NO_3}^-$ on KSF was the largest as $825\;{\mu}g/g$ and $707\;{\mu}g/g$ respectively and that of $F^-$ on $Ca^{2+}$ ion exchanged bentonite was $255\;{\mu}g/g$ and that of ${NO_3}^-$ on K10 was $103\;{\mu}g/g$. In general, the efficiency of removal for the anionic species was increased with increasing of the amount of the adsorbent. Especially, for the amount of 6 g of KSF, the efficiency of removal for $F^-$ and ${NO_3}^-$ was 99% and 95% respectively. But, for all adsorbents, the efficiency of removal for $Cl^-$ was less than 9%. Also, a Freundlich equation was used to fit the acquired experimental data. As the result, for the $F^-$ and ${NO_3}^-$ on KSF, Freundlich constants, K, was respectively 1.09 and $0.45\;[mg/g][L/mg]^{1/n}$ and the adsorption intensity(1/n) was determined to be 0.08 and 0.27 respectively.

Adsorption Characteristics of Heavy Metals on Clay Minerals (점토광물에 의한 중금속 흡착 특성)

  • Moon, Jeong-Ho;Kim, Tae-Jin;Choi, Choong-Ho;Kim, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.704-712
    • /
    • 2006
  • This research was designed to investigate the removal of heavy metals, such as $Al^{3+}$, $Cu^{2+}$, $Mn^{2+}$, $Pb^{2+}$ and $Zn^{2+}$, by adsorption on clay minerals. Bentonite(Raw-Bentonite), $Ca^{2+}$ and $Na^+$ ion exchanged bentonite(Ca- and Na-Bentonite) and montmorillonite, such as KSF and K10 from Sigma Aldrich, were used as adsorbents. The component of five inorganic adsorbents was analyzed by XRF, and the concentration of metal ions was measured by ICP. The cation exchange capacity(CEC) and the particle charge of adsorbents were measured. The initial concentration range of metal ions was $10{\sim}100$ mg/L. From the experimental results, it was shown that the adsorption equilibrium was attained after $1{\sim}2$ hours. The maximum percentage removal of $Al^{3+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ on Na-Bentonite were more than 98% and that of $Mn^{2+}$ was 66%. $Al^{3+}$ was leached out from KSF with the higher concentration of hydrogen ion. Percentage removals of $Pb^{2+}$ and $Zn^{2+}$ on KSF were 88% and 59%, respectively. In general, the percentage removal of metal ions was decreased with the higher initial concentration of metal ions. The adsorption capacity of metal ions on Na-Bentonite was $1.3{\sim}19$ mg/g. Freundlich equation was used to fit the acquired experimental data. As the results, the adsorption capacity of metal ions was in the order of Na-Bentonite$\gg$Raw-Bentonite$\cong$K10>Ca-Bentonite>KSF. Freundlich constant, K of Na-Bentonite was the largest for metal ions. The order K of Na-Bentonite was Al>Cu>Pb>Zn>Mn, and the adsorption intensity(1/n) was determined to be $0.2{\sim}0.39$.