• Title/Summary/Keyword: Monthly load forecasting

Search Result 11, Processing Time 0.023 seconds

Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models (다중회귀모형을 이용한 104주 주 최대 전력수요예측)

  • Jung, Hyun-Woo;Kim, Si-Yeon;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

Short-Term Forecasting of Monthly Maximum Electric Power Loads Using a Winters' Multiplicative Seasonal Model (Winters' Multiplicative Seasonal Model에 의한 월 최대 전력부하의 단기예측)

  • Yang, Moonhee;Lim, Sanggyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.63-75
    • /
    • 2002
  • To improve the efficiency of the electric power generation, monthly maximum electric power consumptions for a next one year should be forecasted in advance and used as the fundamental input to the yearly electric power-generating master plan, which has a greatly influence upon relevant sub-plans successively. In this paper, we analyze the past 22-year hourly maximum electric load data available from KEPCO(Korea Electric Power Corporation) and select necessary data from the raw data for our model in order to reflect more recent trends and seasonal components, which hopefully result in a better forecasting model in terms of forecasted errors. After analyzing the selected data, we recommend to KEPCO the Winters' multiplicative model with decomposition and exponential smoothing technique among many candidate forecasting models and provide forecasts for the electric power consumptions and their 95% confidence intervals up to December of 1999. It turns out that the relative errors of our forecasts over the twelve actual load data are ranged between 0.1% and 6.6% and that the average relative error is only 3.3%. These results indicate that our model, which was accepted as the first statistical forecasting model for monthly maximum power consumption, is very suitable to KEPCO.

A Study the load Forecasting Techniques using load Composition Rates (Residential load) (부하구성비를 이용한 부하예측에 관한 연구 - 주거용 부하를 중심으로 한)

  • Park, Jun-Yioul;Lim, Jae-Yun;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.82-85
    • /
    • 1993
  • The load forecasting has been essential in planning and operation of power systems. The load composition rata is also needed to analyze power-systems - load flow calculation and system stability. This paper proposes the monthly peak load forecasting methods for load groups in residential class using load composition rate and electric consumption characteristics. The proposed methods were applied to a real-scale power system and the effectiveness was turned out.

  • PDF

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요예측)

  • Kim, Ki-Su;Ryu, Gu-Hyun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1695-1699
    • /
    • 2009
  • This paper analyzed the characteristics of the demand of electric power in Jeju by year, day. For this analysis, this research used the correlation between the changes in the temperature and the demand of electric power in summer, and cleaned the data of the characteristics of the temperatures, using the coefficient of correlation as the standard. And it proposed the algorithm of forecasting the short-term electric power demand in Jeju, Therefore, in the case of summer, the data by each cleaned temperature section were used. Based on the data, this paper forecasted the short-term electric power demand in the exponential smoothing method. Through the forecast of the electric power demand, this paper verified the excellence of the proposed technique by comparing with the monthly report of Jeju power system operation result made by Korea Power Exchange-Jeju.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

A Study on the Prediction of Power Demand for Electric Vehicles Using Exponential Smoothing Techniques (Exponential Smoothing기법을 이용한 전기자동차 전력 수요량 예측에 관한 연구)

  • Lee, Byung-Hyun;Jung, Se-Jin;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In order to produce electric vehicle demand forecasting information, which is an important element of the plan to expand charging facilities for electric vehicles, a model for predicting electric vehicle demand was proposed using Exponential Smoothing. In order to establish input data for the model, the monthly power demand of cities and counties was applied as independent variables, monthly electric vehicle charging stations, monthly electric vehicle charging stations, and monthly electric vehicle registration data. To verify the accuracy of the electric vehicle power demand prediction model, we compare the results of the statistical methods Exponential Smoothing (ETS) and ARIMA models with error rates of 12% and 21%, confirming that the ETS presented in this paper is 9% more accurate as electric vehicle power demand prediction models. It is expected that it will be used in terms of operation and management from planning to install charging stations for electric vehicles using this model in the future.

A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand (수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Song, Jae-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

Analysis of Apartment Power Consumption and Forecast of Power Consumption Based on Deep Learning (공동주택 전력 소비 데이터 분석 및 딥러닝을 사용한 전력 소비 예측)

  • Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1373-1380
    • /
    • 2019
  • In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.

Generation and Discharge Characteristics of Non-point Pollutants from Farmlands of Small Watershed for Nak-dong River (낙동강 소유역 경지에서의 비점오염원 물질 발생 및 배출 특성)

  • Jung, Yong-Jun;Nam, Kwang-Hyun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.333-338
    • /
    • 2004
  • This study was carried out to investigate the generation and discharge characteristics of non-point pollutants from farmlands in Nak-dong river basin. Annual unit generation load of nitrogen and phosphorus by fertilization in the test paddy field was almost similar to those calculated by the fertilization standards of district agricultural technology center, but it was extremely higher in case of the test dry field. By comparing annual total generation load of nutrients from fertilization to the data of fertilizer marketing, the accurate forecasting of generation load of pollutants was achieved by marketing data. The annual total discharge ratio of nutrients through infiltration and overflow from the farmland of the test paddy field were 9.5% and 1.1%, respectively, and those in the test dry field were 22.0% and 0.1%, respectively. The monthly discharge load of nutrients were shown the highest proportioned to the discharge load from lands, but it showed higher in phosphorus, which was caused by the intermittent discharge of phosphorus accumulated in drainage.