• Title/Summary/Keyword: Monte-Carlo simulation method

Search Result 1,426, Processing Time 0.025 seconds

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

Investigation of Scatter and Septal Penetration in I-131 Imaging Using GATE Simulation (GATE 시뮬레이션을 이용한 I-131 영상의 산란 및 격벽통과 보정방법 연구)

  • Jung, Ji-Young;Kim, Hee-Joung;Yu, A-Ram;Cho, Hyo-Min;Lee, Chang-Lae;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • Scatter correction for I-131 plays a very important role to improve image quality and quantitation. I-131 has multiple and higher energy gamma-ray emissions. Image quality and quantitative accuracy in I-131 imaging are degraded by object scatter as well as scatter and septal penetration in the collimator. The purpose of this study was to estimate scatter and septal penetration and investigate two scatter correction methods using Monte Carlo simulation. The gamma camera system simulated in this study was a FORTE system (Phillips, Nederland) with high energy, general-purpose, parallel hole collimator. We simulated for two types of high energy collimators. One is composed of lead, and the other is composed of artificially high Z number and high density. We simulated energy spectrum using a point source in air. We estimated both full width at half maximum (FWHM) and full width at tenth maximum (FWTM) using line spread function (LSF) in cylindrical water phantom. We applied two scatter correction methods, triple energy window scatter correction (TEW) and extended triple energy window scatter correction (ETEW). The TEW method is a pixel-by pixel based correction which is easy to implement clinically. The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection window, which can overestimate or the underestimate scatter. The both FWHM and FWTM were estimated as 41.2 mm and 206.5 mm for lead collimator, respectively. The FWHM and FWTM were estimated as 27.3 mm and 45.6 mm for artificially high Z and high density collimator, respectively. ETEW showed that the estimation of scatter components was close to the true scatter components. In conclusion, correction for septal penetration and scatter is important to improve image quality and quantitative accuracy in I-131 imaging. The ETEW method in scatter correction appeared to be useful in I-131 imaging.

  • PDF

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Probabilistic Exposure Assessment of Pesticide Residues in Agricultural Products in Gyeonggi-do (경기도내 유통 농산물 중 잔류농약의 확률론적 노출평가 연구)

  • Do, Young-Sook;Kim, Jung-Boem;Kang, Suk-Ho;Kim, Nan-Young;Eom, Mi-Na;Yoon, Mi-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2013
  • A probabilistic exposure assessment was performed on the monitoring data of pesticides were assessed in agricultural products in Gyeonggi-do from 2006 to 2010. Chlorothalonil, chlorpyrifos, dicofol, endosulfan, EPN, ethoprophos, fenitrothion, methidathion, phenthoate and tebupirimfos were assessed. For this assessment, we used Monte Carlo simulation software and the distribution of concentration and intake were assumed to lognormal distribution by inputting mean and standard deviation. The hazard index (HI, %ADI) of average value and the $95^{th}$ percentile based on a probabilistic method were usually lower than those by a deterministic one. For the whole population, when non-detects data were assigned 0 mg/kg, HI of the average value and the $95^{th}$ percentile showed 0.05~0.70% and 0.11~1.94%, respectively. When nondetects data were assigned 0.005 mg/kg, HI of the average value and the $95^{th}$ percentile were 0.41~4.42% and 0.98~13.81%. For only consumers, when non-detects data were assigned 0 mg/kg, HI of the average value and the $95^{th}$ percentile were 1.24~10.16% and 3.72~33.81%, respectively. When non-detects data were assigned 0.005 mg/kg, HI of the average value and the $95^{th}$ percentile were 3.43~18.26% and 9.45~54.99%, respectively. Methidathion had highest values when both of 0 and 0.005 were assigned to non-detecs data for consumers only. This study showed that agricultural products in Gyeonggi-do were safe because they had less than 100 of HI (%ADI) based on probabilistic exposure assessment.

Characterization and annealing effect of tantalum oxide thin film by thermal chemical (열CVD방법으로 증착시킨 탄탈륨 산화박막의 특성평가와 열처리 효과)

  • Nam, Gap-Jin;Park, Sang-Gyu;Lee, Yeong-Baek;Hong, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.42-54
    • /
    • 1995
  • $Ta_2O_5$ thin film IS a promising material for the high dielectrics of ULSI DRAM. In this study, $Ta_2O_5$ thin film was grown on p-type( 100) Si wafer by thermal metal organic chemical vapo deposition ( MCCVD) method and the effect of operating varialbles including substrate temperature( $T_s$), bubbler temperature( $T_ \sigma$), reactor pressure( P ) was investigated in detail. $Ta_2O_5$ thin film were analyzed by SEM, XRD, XPS, FT-IR, AES, TEM and AFM. In addition, the effect of various anneal methods was examined and compared. Anneal methods were furnace annealing( FA) and rapid thermal annealing( RTA) in $N_{2}$ or $O_{2}$ ambients. Growth rate was evidently classified into two different regimes. : (1) surface reaction rate-limited reglme in the range of $T_s$=300 ~ $400 ^{\circ}C$ and (2: mass transport-limited regime in the range of $T_s$=400 ~ $450^{\circ}C$.It was found that the effective activation energies were 18.46kcal/mol and 1.9kcal/mol, respectively. As the bubbler temperature increases, the growth rate became maximum at $T_ \sigma$=$140^{\circ}C$. With increasing pressure, the growth rate became maximum at P=3torr but the refractive index which is close to the bulk value of 2.1 was obtained in the range of 0.1 ~ 1 torr. Good step coverage of 85. 71% was obtained at $T_s$=$400 ^{\circ}C$ and sticking coefficient was 0.06 by comparison with Monte Carlo simulation result. From the results of AES, FT-IR and E M , the degree of SiO, formation at the interface between Si and TazO, was larger in the order of FA-$O_{2}$ > RTA-$O_{2}$, FA-$N_{2}$ > RTA-$N_{2}$. However, the $N_{2}$ ambient annealing resulted in more severe Weficiency in the $Ta_2O_5$ thin film than the TEX>$O_{2}$ ambient.

  • PDF

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.