• Title/Summary/Keyword: Monte-Carlo Tree Searching

Search Result 2, Processing Time 0.017 seconds

Enhanced MCTS Algorithm for Generating AI Agents in General Video Games (일반적인 비디오 게임의 AI 에이전트 생성을 위한 개선된 MCTS 알고리즘)

  • Oh, Pyeong;Kim, Ji-Min;Kim, Sun-Jeong;Hong, Seokmin
    • The Journal of Information Systems
    • /
    • v.25 no.4
    • /
    • pp.23-36
    • /
    • 2016
  • Purpose Recently, many researchers have paid much attention to the Artificial Intelligence fields of GVGP, PCG. The paper suggests that the improved MCTS algorithm to apply for the framework can generate better AI agent. Design/methodology/approach As noted, the MCTS generate magnificent performance without an advanced training and in turn, fit applying to the field of GVGP which does not need prior knowledge. The improved and modified MCTS shows that the survival rate is increased interestingly and the search can be done in a significant way. The study was done with 2 different sets. Findings The results showed that the 10 training set which was not given any prior knowledge and the other training set which played a role as validation set generated better performance than the existed MCTS algorithm. Besed upon the results, the further study was suggested.

A sequential outlier detecting method using a clustering algorithm (군집 알고리즘을 이용한 순차적 이상치 탐지법)

  • Seo, Han Son;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.699-706
    • /
    • 2016
  • Outlier detection methods without performing a test often do not succeed in detecting multiple outliers because they are structurally vulnerable to a masking effect or a swamping effect. This paper considers testing procedures supplemented to a clustering-based method of identifying the group with a minority of the observations as outliers. One of general steps is performing a variety of t-test on individual outlier-candidates. This paper proposes a sequential procedure for searching for outliers by changing cutoff values on a cluster tree and performing a test on a set of outlier-candidates. The proposed method is illustrated and compared to existing methods by an example and Monte Carlo studies.