• 제목/요약/키워드: Monte carlo analysis

검색결과 1,765건 처리시간 0.026초

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정(II) - L-모멘트법을 중심으로 - (Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques(l ) - On the method of L-moments-)

  • 이순혁;박종화;류경식
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.70-82
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among applied distributions. Regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the legions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • 한국측량학회지
    • /
    • 제37권2호
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

Analysis of VVER-1000 mock-up criticality experiments with nuclear data library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Setiawan, Fathurrahman;Lemaire, Matthieu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.1-18
    • /
    • 2021
  • The criticality analysis of VVER-1000 mock-up benchmark experiments from the LR-0 research reactor operated by the Research Center Rez in the Czech Republic has been conducted with the MCS Monte Carlo code developed at the Computational Reactor Physics and Experiment laboratory of the Ulsan National Institute of Science and Technology. The main purpose of this work is to evaluate the newest ENDF/B-VIII.0 nuclear data library against the VVER-1000 mock-up integral experiments and to validate the criticality analysis capability of MCS for light water reactors with hexagonal fuel lattices. A preliminary code/code comparison between MCS and MCNP6 is first conducted to verify the suitability of MCS for the benchmark interpretation, then the validation against experimental data is performed with both ENDF/B-VII.1 and ENDF/B-VIII.0 libraries. The investigated experimental data comprises six experimental critical configurations and four experimental pin-by-pin power maps. The MCS and MCNP6 inputs used for the criticality analysis of the VVER-1000 mock-up are available as supplementary material of this article.

몬테-카를로(Monte-Carlo) 방법을 적용한 시스템 양립성 분석 (System Co-existence Analysis Using Monte-Carlo Method)

  • 김영환;어필선;양훈기;박승근;조평동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.193-196
    • /
    • 2005
  • This paper presents a Monte-Carlo based method to obtain a probability of interference among systems. We show an efficient algorithm to calculate not only in-band interference for a given emission mask, but out-of-band interference, which depends on the blocking performance of a victim receiver filter. Applying the proposed method to an arbitrary system, we show the simulation results by Matlab and compare them with those by a SEAMCAT software

  • PDF

화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발 (A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows)

  • 정찬홍;윤성준
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF

리얼옵션을 활용한 AMOLED산업 라인 증설의 옵션가치 (REAL OPTIONS VALUATION MODEL OF LINE EXPANSION PROBLEM IN THE AMOLED INDUSTRY LINE EXPANSION)

  • 이수정;김도훈
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.957-962
    • /
    • 2008
  • We propose a model for the line expansion problem in the AMOLED (Active Matrix Organic Light Emitting Diodes) industry, which now faces market uncertainty: for example, changing customer needs, technological development path, etc. We focus on the optimal investment time and size of the AMOLED production lines. In particular, employed here is the ROV (Real Options Valuation) model to show how to capture the value of line expansion and to determine the optimal investment time. The ROV framework provides a systematic procedure to quantify an expected outcome of a flexible decision which is not possible in the frame of the traditional NPV (Net Present Value) approach. Furthermore, we also use Monte Carlo simulation to measure the uncertainty associated with the line expansion decision; Monte Carlo simulation estimates the volatility of a decision alternative. Lastly, we present a scenario planning to be conducted for what-if analysis of the ROV model.

  • PDF

Monte-Carlo Simulation을 이용한 연계계통의 최대수송전력 산정 (Maximum Transfer Capability Calculating in Interconnected Power System using Monte-Carlo Sinulation)

  • 남광우;김용하;이범;최상규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.360-362
    • /
    • 2000
  • This paper presents a probabilistic method for describing the transfer capability of one area in an interconnected power system. The approach is based on Monte Carlo simulation scheme. The result of this method is the probability distribution of transfer capability. The distribution yield a general framework for probabilistic analysis of STC. IEEE RTS-24 power system is utilized to evaluate the proposed method.

  • PDF

Determination of Single Escape and Double Escape Peak Efficiency for a HPGe Detector

  • Park Chang Su;Sun Gwang Min;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.523-528
    • /
    • 2003
  • The efficiencies of single escape and double escape peaks were calculated by using Monte Carlo method and compared with measured efficiencies. The efficiency was obtained from the area ratio of escape peak to full energy absorption peak and the full energy absorption peak efficiency. For the escape peak interfered with other $\gamma-ray$ peaks, the net area was obtained by area correction. The GEANT code developed in CERN was used for the Monte Carlo calculation. The calculated efficiencies of the escape peaks agreed with the measurement within $12\%$.

InAlGaAs/InGaAs HBT의 Monte carlo 해석 (Monte carlo analysis of InAlGaAs/InGaAs HBT)

  • 황성범;김용규;송정근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.405-408
    • /
    • 1998
  • Due to the large conduction band discontinuity between emitter base, OmGaAs HBT has an advantge to enable the hot electrons to inject into the base. In this paper, InAlGaAs/InGaAs HBT with the various emitter junction gradings and the modified collectors are simulated and analyzed by HMC(hybrid monte carlo) simulator in order to find a optimal structure for the shortest transit time. A minium base transit time (.tau.$_{b}$ ) of 0.21 ps was obtained for HBT with the grading layer, which is parabolically graded from x=1.0 to x=0.5. The minimum collector transit time (.tau.$_{c}$ ) of 0.31ps was found when the collector was modified by inserting p$^{[-10]}$ and p$^{+}$ layers. Thus HBT in combination with the emitter grading and the modified collector layer showed the cut-off frequency (f$_{T}$) of 183GHz.z.z.

  • PDF