• 제목/요약/키워드: Monte Carlo simulation code

검색결과 274건 처리시간 0.062초

뇌 정위 방사선수술의 선량 계산을 위한 몬테카를로 시뮬레이션 코드 개발 (Development of Monte Carlo Simulation Code for the Dose Calculation of the Stereotactic Radiosurgery)

  • 강정구;이동준
    • 한국의학물리학회지:의학물리
    • /
    • 제23권4호
    • /
    • pp.303-308
    • /
    • 2012
  • 뇌정위 방사선수술의 선량계산을 위해 Geant4 기반의 응용 프로그램을 개발 하였다. 선형가속기에서 발생하는 방사선의 스펙트럼을 입력하기 위하여 사전에 실행하여 구한 스펙트럼에 각 에너지별로 구한 가중치를 곱하여 확률밀도를 구하였다. 이를 누적밀도로 변환하여 입력하도록 하였다. 메신저 클래스를 이용하여 다양한 형태의 MLC 조사면을 설정할 수 있도록 하였다. 갠트리와 테이블의 회전을 모사하기 위하여 rotateX와 rotateY라는 회전행렬을 사용하였다. 월드좌표 속에서 갠트리와 테이블을 정의하여 각각 회전을 구현하였다. 실제 환자의 자료는 CT의 dicom 파일에서 픽셀 크기, 매트릭스 크기 등의 정보와 픽셀의 HU를 밀도로 변환한 파일을 생성한 다음 이 파일을 이용 환자의 모델링에 이용 하였다. 환자의 모델링은 팬텀월드 안에 픽셀의 크기에 해당하는 복셀을 정의하고 이 복셀에 픽셀의 밀도와 이 밀도에 해당하는 물질을 할당해주었다.

Monte Carlo Calculation for Production Cross-Sections of Projectile's Isotopes from Therapeutic Carbon and Helium Ion Beams in Different Materials

  • Quazi Muhammad Rashed Nizam;Asif Ahmed;Iftekhar Ahmed
    • Journal of Radiation Protection and Research
    • /
    • 제48권4호
    • /
    • pp.204-212
    • /
    • 2023
  • Background: Isotopes of the projectile may be produced along the beam path during the irradiation of a target by a heavy ion due to inelastic interactions with the media. This study analyzed the production cross-section of carbon (C) and Helium (He) projectile's isotopes resulting from the interactions of these beams with different materials along the beam path. Materials and Methods: In this study, we transport C and He ion beams through different materials. This transportation was made by the Monte Carlo simulation. Particle and Heavy Ion Transport code System (PHITS) has been used for this calculation. Results and Discussion: It has been found that 10C, 11C, and 13C from the 12C ion beam and 3He from the 4He ion beam are significant projectile's isotopes that have higher flux than other isotopes of these projectiles. The 4He ion beam has a higher projectile's isotope production cross-section along the beam path, which adds more impurities to the beam than the 12C ion beam. These projectile's isotopes from both the 12C and 4He ion beams have higher production cross-sections in hydrogenous materials like water or polyethylene. Conclusion: It is important to distinguish these projectile's isotopes from the primary beam particles to obtain a precise and accurate cross-section result by minimizing the error during measurement with a nuclear track detector. This study will show the trend of the production probability of projectile's isotopes for these ion beams.

근접 방사선치료용 이리듐 선원의 선량분포에 대한 몬데칼로 시뮬레이션 (Monte Carlo Simulation for Dose Distributions from Ir-192 in Brachytherapy)

  • 김승곤;강정구;이정옥;정동혁;문성록
    • 한국의학물리학회지:의학물리
    • /
    • 제13권4호
    • /
    • pp.187-194
    • /
    • 2002
  • 본 연구에서는 근접 방사선치료용 Ir-192 선윈의 흡수선량에 관한 물리적 특성들을 몬테칼로 계산을 이용하여 조사하였다. 몬테칼로 계산은 EGS4 코드로 수행하였으며 이를 위하여 원통형 선원과 팬텀 그리고 에너지 분포의 입력과 처리가 가능한 사용자 코드를 작성하였다. 베타선에 대한 계산 결과, 베타선들은 선원과 0.5-5.0 cm 거리에서 전체 흡수선량에 평균 0.02% 기여하는 것으로 나타났다. 이것은 초기 베타선들이 선원과 밀봉물질에서 대부분 흡수를 당하지만 이 과정에서 발생한 저에너지 제동복사 광자들이 원거리까지 기여하기 때문이다. 밀봉물질에 의한 흡수선량의 변화는 백금으로 취한 경우에 평균 2.8% 그리고 철로 취한 경우에 평균 1.1% 감소하는 것으로 나타났다. 몬테칼로 계산으로 구한 반경선량함수는 선원과 0.5-10.0 cm 반경거리 구간에 대하여 TG-43 보고서의 값들과 $\pm$3% 이내로 일치하였다. 본 연구에서 작성한 사용자 코드는 다른 종류 및 다른 크기의 선원에 대해서도 계산을 수행할 수 있어서 근접 방사선치료용 선원의 생산 및 가공에 관한 연구에 다양하게 이용될 수 있다.

  • PDF

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Side Information에 오경보와 미탐지가 존재할 띠 저속 주파수 도약 시스템의 BER분석 (Analysis of BER in Slow Frequency-Hopping System with False Alarm and Miss in Side Information)

  • 한상진;김용철;강경원;윤희철
    • 한국통신학회논문지
    • /
    • 제26권11B호
    • /
    • pp.1556-1564
    • /
    • 2001
  • SFH (저속 주파수 도약) 시스템에서는 주파수 슬롯의 히트에 대처하기 위하여, 보통 Reed-Solomon 부호와 인터리빙을 사용한다. SI (Side Information)를 이용하여 히트되는 심볼을 이레이져 처리하는 EE (Errors-and-Erasure) 복호 방식의 패킷 단위 오류 율에 대해서는 많은 분석이 이루어졌으나, 오경보와 미탐지가 발생하는 불완전한 Sl를 이용할 때의 BER 성능에 대해서는 Monte Carlo 시뮬레이션에 의한 분석만이 행하여 졌을 뿐이다. 본 논문에서는 테스트 패턴을 사용하여 얻은 SI에 오경보와 미탐지가 존재하는 상황에서 SFH 시스템의 BER을 추정하는수식을 제안한다. Sl에 오류가 존재하지 않는다는 가정을 사용하지 않고, 심볼의 비트 오류의 수를 추정하여 SFH시스템의 BER을 추정한 값과 시뮬레이션으로 얻어진 BER을 비교하여 두 결과가 일치함을 확인하였다. 또한 기존의 연구에서 얻은 수식들은 본 연구에서 제안하는 수식으로부터 유도할 수 있음을 보였다.

  • PDF

DSMC를 이용한 미끄럼흐름영역에서 미소채널의 유동저항 해석 (Analysis of Flow Resistance in Microchannels at Slip-Flow Regime by Direct Simulation Monte Carlo Method)

  • 성재용;안영규;이석종;이명호
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2006
  • The characteristics of micro gaseous flows in microchannels have been analyzed in view of flow resistance using the direct simulation Monte Carlo (DSMC) method which is a molecule-based numerical modeling technique. For this purpose, a DSMC code where the pressure boundary condition was specified at the inlet and outlet, has been developed and the results of simulations showed satisfactory agreements with the analytic solution in the slip flow regime. (0.01 < Kn < 0.1) By varying the height and length of the microchannel, the effect of pressure difference between the inlet and outlet was examined. The present computation indicates that the curvature in pressure distribution along the channel increases due to the effect of compressibility when the pressure difference increases. To obtain the flow resistance regardless of the channel dimensions, a standard curve is devised in the present study by introducing the concept of unit mass flowrate and unit driving pressure force. From this curve, it is shown that in micro flows, a significant deviation from the laminar incompressible flow occurs by reducing the flow resistance.

Influence of partial accommodation coefficients on the aerodynamic parameters of an airfoil in hypersonic, rarefied flow

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • 제2권4호
    • /
    • pp.427-443
    • /
    • 2015
  • The present paper is the follow-on of a former work in which the influence of the gas-surface interaction models was evaluated on the aerodynamic coefficients of an aero-space-plane and on a section of its wing. The models by Maxwell and by Cercignani-Lampis-Lord were compared by means of Direct Simulation Monte Carlo (DSMC) codes. In that paper the diffusive, fully accommodated, semi-specular and specular accommodation coefficients were considered. The results pointed out that the influence of the interaction models, considering the above mentioned accommodation coefficients, is pretty strong while the Cercignani-Lampis-Lord and the Maxwell models are practically equivalent. In the present paper, the comparison of the same models is carried out considering the dependence of the accommodation coefficients on the angle of incidence (or partial accommodation coefficients). More specifically, the normal and the tangential momentum partial accommodation coefficients, obtained experimentally by Knetchel and Pitts, have been implemented. Computer tests on a NACA-0012 airfoil have been carried out by the DSMC code DS2V-64 bits. The airfoil, of 2 m chord, has been tested both in clean and flapped configurations. The simulated conditions were those at an altitude of 100 km where the airfoil is in transitional regime. The results confirmed that the two interaction models are practically equivalent and verified that the use of the Knetchel and Pitts coefficients involves results very close to those computed considering a diffusive, fully accommodated interaction both in clean and flapped configurations.

Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Chan Hyeong;Shin, Dong Ho;Jeong, Jong Hwi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.533-538
    • /
    • 2019
  • The mechanical-collimation imaging is the most mature technology in prompt gamma (PG) imaging which is considered the most promising technology for beam range verification in proton therapy. The purpose of the present study is to compare the performances of two mechanical-collimation PG cameras, knife-edge (KE) camera and multi-slit (MS) camera. For this, the PG cameras were modeled by Geant4 Monte Carlo code, and the performances of the cameras were compared for imaginary point and line sources and for proton beams incident on a cylindrical PMMA phantom. From the simulation results, the KE camera was found to show higher counting efficiency than the MS camera, being able to estimate the beam range even for $10^7$ protons. Our results, however, confirmed that in order to estimate the beam range correctly, the KE camera should be aligned, at least approximately, to the location of the proton beam range. The MS camera was found to show lower efficiency, being able to estimate the beam range correctly only when the number of the protons is at least $10^8$. For enough number of protons, however, the MS camera estimated the beam range correctly, errors being less than 1.2 mm, regardless of the location of the camera.

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.