• Title/Summary/Keyword: Monte Carlo learning

Search Result 66, Processing Time 0.03 seconds

Development of DL-MCS Hybrid Expert System for Automatic Estimation of Apartment Remodeling (공동주택 리모델링 자동견적을 위한 DL-MCS Hybrid Expert System 개발)

  • Kim, Jun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.113-124
    • /
    • 2020
  • Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.

MCMC Algorithm for Dirichlet Distribution over Gridded Simplex (그리드 단체 위의 디리슐레 분포에서 마르코프 연쇄 몬테 칼로 표집)

  • Sin, Bong-Kee
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.94-99
    • /
    • 2015
  • With the recent machine learning paradigm of using nonparametric Bayesian statistics and statistical inference based on random sampling, the Dirichlet distribution finds many uses in a variety of graphical models. It is a multivariate generalization of the gamma distribution and is defined on a continuous (K-1)-simplex. This paper presents a sampling method for a Dirichlet distribution for the problem of dividing an integer X into a sequence of K integers which sum to X. The target samples in our problem are all positive integer vectors when multiplied by a given X. They must be sampled from the correspondingly gridded simplex. In this paper we develop a Markov Chain Monte Carlo (MCMC) proposal distribution for the neighborhood grid points on the simplex and then present the complete algorithm based on the Metropolis-Hastings algorithm. The proposed algorithm can be used for the Markov model, HMM, and Semi-Markov model for accurate state-duration modeling. It can also be used for the Gamma-Dirichlet HMM to model q the global-local duration distributions.

Investigation of Detectable Crack Length in a Bolt Hole Using Eddy Current Inspection (와전류탐상검사를 이용하여 탐지 가능한 볼트홀 내부 균열 길이 연구)

  • Lee, Dooyoul;Yang, Seongun;Park, Jongun;Baek, Seil;Kim, Soonkil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.729-736
    • /
    • 2017
  • In this study, the physics-based model and machine learning technique were used to conduct model-assisted probability of detection (MAPOD) experiments. The possibility of using in-service cracked parts was also investigated. Bolt hole shaped specimens with fatigue crack on the hole surface were inspected using eddy current inspection. Owing to MAPOD, the number of experimental factors decreased significantly. The uncertainty in the crack length measurement for in-service cracked parts was considered by the application of Monte Carlo simulation.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

A Method for Learning Macro-Actions for Virtual Characters Using Programming by Demonstration and Reinforcement Learning

  • Sung, Yun-Sick;Cho, Kyun-Geun
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.409-420
    • /
    • 2012
  • The decision-making by agents in games is commonly based on reinforcement learning. To improve the quality of agents, it is necessary to solve the problems of the time and state space that are required for learning. Such problems can be solved by Macro-Actions, which are defined and executed by a sequence of primitive actions. In this line of research, the learning time is reduced by cutting down the number of policy decisions by agents. Macro-Actions were originally defined as combinations of the same primitive actions. Based on studies that showed the generation of Macro-Actions by learning, Macro-Actions are now thought to consist of diverse kinds of primitive actions. However an enormous amount of learning time and state space are required to generate Macro-Actions. To resolve these issues, we can apply insights from studies on the learning of tasks through Programming by Demonstration (PbD) to generate Macro-Actions that reduce the learning time and state space. In this paper, we propose a method to define and execute Macro-Actions. Macro-Actions are learned from a human subject via PbD and a policy is learned by reinforcement learning. In an experiment, the proposed method was applied to a car simulation to verify the scalability of the proposed method. Data was collected from the driving control of a human subject, and then the Macro-Actions that are required for running a car were generated. Furthermore, the policy that is necessary for driving on a track was learned. The acquisition of Macro-Actions by PbD reduced the driving time by about 16% compared to the case in which Macro-Actions were directly defined by a human subject. In addition, the learning time was also reduced by a faster convergence of the optimum policies.

A piecewise affine approximation of sigmoid activation functions in multi-layered perceptrons and a comparison with a quantization scheme (다중계층 퍼셉트론 내 Sigmoid 활성함수의 구간 선형 근사와 양자화 근사와의 비교)

  • 윤병문;신요안
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.56-64
    • /
    • 1998
  • Multi-layered perceptrons that are a nonlinear neural network model, have been widely used for various applications mainly thanks to good function approximation capability for nonlinear fuctions. However, for digital hardware implementation of the multi-layere perceptrons, the quantization scheme using "look-up tables (LUTs)" is commonly employed to handle nonlinear signmoid activation functions in the neworks, and thus requires large amount of storage to prevent unacceptable quantization errors. This paper is concerned with a new effective methodology for digital hardware implementation of multi-layered perceptrons, and proposes a "piecewise affine approximation" method in which input domain is divided into (small number of) sub-intervals and nonlinear sigmoid function is linearly approximated within each sub-interval. Using the proposed method, we develop an expression and an error backpropagation type learning algorithm for a multi-layered perceptron, and compare the performance with the quantization method through Monte Carlo simulations on XOR problems. Simulation results show that, in terms of learning convergece, the proposed method with a small number of sub-intervals significantly outperforms the quantization method with a very large storage requirement. We expect from these results that the proposed method can be utilized in digital system implementation to significantly reduce the storage requirement, quantization error, and learning time of the quantization method.quantization method.

  • PDF

Machine Learning Based Variation Modeling and Optimization for 3D ICs

  • Samal, Sandeep Kumar;Chen, Guoqing;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.258-267
    • /
    • 2016
  • Three-dimensional integrated circuits (3D ICs) experience die-to-die variations in addition to the already challenging within-die variations. This adds an additional design complexity and makes variation estimation and full-chip optimization even more challenging. In this paper, we show that the industry standard on-chip variation (AOCV) tables cannot be applied directly to 3D paths that are spanning multiple dies. We develop a new machine learning-based model and methodology for an accurate variation estimation of logic paths in 3D designs. Our model makes use of key parameters extracted from existing GDSII 3D IC design and sign-off simulation database. Thus, it requires no runtime overhead when compared to AOCV analysis while achieving an average accuracy of 90% in variation evaluation. By using our model in a full-chip variation-aware 3D IC physical design flow, we obtain up to 16% improvement in critical path delay under variations, which is verified with detailed Monte Carlo simulations.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

Data Mining Using Reversible Jump MCMC and Bayesian Network Learning (Reversible Jump MCMC와 베이지안망 학습에 의한 데이터마이닝)

  • 하선영;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.90-92
    • /
    • 2000
  • 데이터마이닝 문제는 데이터를 그 속성들에 따라 분류하여 예측하는 것뿐만 아니라 분류된 속성들간의 연관성에 대해 잘 설명할 수 있어야 한다. 일반적으로 변수들간의 연관성을 잘 설명할 수 있으면서도 높은 예측력을 가지는 방법으로는 베이지안 네트웍 분류자(Bayesian network classifier)가 있다. 그러나 이것은 데이터 마이닝과 같은 대용량 데이터에서는 성능이 떨어지는 단점이 있다. 이에 이 논문에서는 최근 RBF 신경망이 입력변수 선정문제에 성공적으로 적용된 Reversible Jump Markov Chain Monte Carlo 방법을 이용하여 최적의 입력변수들만을 선택하여 베이지안 네트웍을 학습하는 Selective BN Augmented Naive-Bayes Classifier를 새로운 방안으로 제안하고 이를 실제 데이터마이닝 문제에 적용한 결과를 제시한다.

  • PDF