• 제목/요약/키워드: Monsoon season

검색결과 153건 처리시간 0.025초

Integrated Environment Impact Assessment of Brick Kiln using Environmental Performance Scores

  • Pokhrel, Rajib;Lee, Heekwan
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.15-24
    • /
    • 2014
  • The capital city of Himalayan Country Nepal, Kathmandu Valley is surrounded by consecutive high mountains, which limits the air distribution and mixing effects significantly. It in turn generates steady air flow pattern over a year except in monsoon season. The air shed in the Valley is easily trapped by the surrounded mountains and the inversion layer formulated as the cap. The $PM_{10}$ concentration was noticeably higher than the standard level (120 ${\mu}g/m^3$) in urban and suburban area of Kathmandu valley for all seasons except monsoon period. The Valley area experiences similar wind patterns (W, WWS, and S) for a year but the Easterly wind prevails only during the monsoon period. There was low and calm wind blows during the winter season. Because of this air flow structure, the air emission from various sources is accumulated within the valley air, high level of air pollution is frequently recorded with other air polluted cities over the world. In this Valley area, brick kilns are recognized as the major air pollution source followed by vehicles. Mostly Bull Trench Kiln (BKT), Hoffman Kiln and Vertical Shaft Brick Kiln (VSBK) are in operation for brick firing in Kathmandu valley where the fuels such as crushed coal, saw dust, and natural gas are used for processing bricks in this study. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) was used for screening and quantifying the potential impacts of air emission from firing fuels. The total Environmental Performance Score (EPS) was estimated and the EPS of coal was approximately 2.5 times higher than those of natural gas and saw dust. It is concluded that the crushed coal has more negative impact to the environment and human health than other fuel sources. Concerning the human health and environment point of view, alternative environment friendly firing fuel need to be used for brick industry in the kiln and the air pollution control devices also need to be applied for minimizing the air emissions from the kilns.

Lightning activity in summer monsoon precipitation over Korean peninsula

  • Kar, S.K.;Ha, Kyung-Ja
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.366-366
    • /
    • 2002
  • Cloud-to ground lightning and total precipitation over Korean peninsula during the summer monsoon season are studied extensively with a special emphasis on the characteristics of convective precipitation. Ten years (1988-1997) lightning and rainfall data and a temporal and spatial scale of one month and 10$^2$ km$^2$ respectively are used to calculate the monthly number of CG lightning flash count. Monsoonal convective activity is higher over the west coast with maxima at two different regions, one in the northern part which increases nortwestward and the other is at the middle west coast of Korea increasing towards the west coast. East coast represents the minimum value of monsoonal convective activity. In the east coast of Korean peninsula, particularly in the region east of Tae-back mountain, the value of Rain yield, (which is defined as the ratio of total precipitation to CG flash count over a common area), is maximum with an average value of 3$\times$10$^{8}$ kg fl$^{-1}$, while the minimum value of rain yield is occurred in the west of Tae-back mountain, with an average value of 0.8$\times$10$^{8}$ kg fl$^{-1}$. Results show in the west coast stations, nearly 82% of the total rainfall is convective in nature, at the middle of the peninsula 53% of the total rain is convective while in the east coast stations 46% contribution from the convective rain is seen. Kanghwa receives the maximum convective rain while at Ulsan the convective rain is minimum. Correlation coefficient between the total precipitation and CG lightning during the summer monsoon season is 0.54.

  • PDF

Assessment of weather events impacts on forage production trend of sorghum-sudangrass hybrid

  • Moonju Kim;Kyungil Sung
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.792-803
    • /
    • 2023
  • This study aimed to assess the impact of weather events on the sorghum-sudangrass hybrid (Sorghum bicolor L.) cultivar production trend in the central inland region of Korea during the monsoon season, using time series analysis. The sorghum-sudangrass production data collected between 1988 and 2013 were compiled along with the production year's weather data. The growing degree days (GDD), accumulated rainfall, and sunshine duration were used to assess their impacts on forage production (kg/ha) trend. Conversely, GDD and accumulated rainfall had positive and negative effects on the trend of forage production, respectively. Meanwhile, weather events such as heavy rainfall and typhoon were also collected based on weather warnings as weather events in the Korean monsoon season. The impact of weather events did not affect forage production, even with the increasing frequency and intensity of heavy rainfall. Therefore, the trend of forage production for the sorghum-sudangrass hybrid was forecasted to slightly increase until 2045. The predicted forage production in 2045 will be 14,926 ± 6,657 kg/ha. It is likely that the damage by heavy rainfall and typhoons can be reduced through more frequent harvest against short-term single damage and a deeper extension of the root system against soil erosion and lodging. Therefore, in an environment that is rapidly changing due to climate change and extreme/abnormal weather, the cultivation of the sorghum-sudangrass hybrid would be advantageous in securing stable and robust forage production. Through this study, we propose the cultivation of sorghum-sudangrass hybrid as one of the alternative summer forage options to achieve stable forage production during the dynamically changing monsoon, in spite of rather lower nutrient value than that of maize (Zea mays L.).

Characteristics of soil respiration temperature sensitivity in a Pinus/Betula mixed forest during periods of rising and falling temperatures under the Japanese monsoon climate

  • Oe, Yusuke;Yamamoto, Akinori;Mariko, Shigeru
    • Journal of Ecology and Environment
    • /
    • 제34권2호
    • /
    • pp.193-202
    • /
    • 2011
  • We studied temperature sensitivity characteristics of soil respiration during periods of rising and falling temperatures within a common temperature range. We measured soil respiration continuously through two periods (a period of falling temperature, from August 7, 2003 to October 13, 2003; and a period of rising temperature from May 2, 2004 to July 2, 2004) using an open-top chamber technique. A clear exponential relationship was observed between soil temperature and soil respiration rate during both periods. However, the effects of soil water content were not significant, because the humid monsoon climate prevented soil drought, which would otherwise have limited soil respiration. We analyzed temperature sensitivity using the $Q_{10}$ value and $R_{ref}$ (reference respiration at the average temperature for the observation period) and found that these values tended to be higher during the period of rising temperature than during the period of falling temperature. In the absence of an effect on soil water content, several other factors could explain this phenomenon. Here, we discuss the factors that control temperature sensitivity of soil respiration during periods of rising and falling temperature, such as root respiration, root growth, root exudates, and litter supply. We also discuss how the contribution of these factors may vary due to different growth states or due to the effects of the previous season, despite a similar temperature range.

Monsoonal sediment transport along the subaqueous Mekong Delta: An analysis of surface sediment grain-size changes

  • Thanh C., Nguyen;An T., Dang;Khuong N.T., Tran
    • Ocean Systems Engineering
    • /
    • 제12권4호
    • /
    • pp.403-411
    • /
    • 2022
  • Annually, about 48-60% of sediment discharge of the Mekong River is delivered near the mouths of the Mekong River branches which is mostly coinciding with the southwest (SW) monsoon. This sediment budget in turn will be southwestwardly transported along the coast of the Mekong Delta (MD) during the northeast (NE) monsoon. Analysis of monsoonal changes in grain-size distribution (GSD) of surface sediment contributes to a better understanding of erosion and deposition processes along the MD. This study aims to figure out changes in GSD and sediment textures along the MD between SW and NE monsoons based on 183 surficial sediment samples collected along the MD during two field surveys carried-out in October 2016 and February-March 2017. Compared to the GSD during the SW and NE monsoon, the GSD along the MD changed significantly, especially in the estuary areas and along the coast of Bac Lieu and Ganh Hao. Whereas, in the west coast of the MD, GSD seem no changes between the two seasons. These changes in seabed sediment suggest that sediment with grain-sizes ranging from silt to fine sand can be transported during only a NE season.

북태평양의 악기상조건과 선박의 안전운항에 관한 연구(II) (A Study on the Safe Operations of Ships under Heavy Weather Conditions in the North Pacific(II))

  • 민병언
    • 한국항해학회지
    • /
    • 제14권2호
    • /
    • pp.33-59
    • /
    • 1990
  • In cold season, the developed extratropical cyclones and associated cold fronts, and NW winter monsoon are encountered very frequently in the North Pacific, especially in the northwest part of it. The two sea areas, namely, the northwest part of North Pacific, especially the eastern area far off Japan east coast, and Burmuda Triangle in the North Atlantic are generally known as two of the most dangerous areas in the world because of high incidence of sea casualties. Even large ocean going vessels were sunk frequently due to strong winds and very high seas caused by NW monsoon or developed cyclones during the winter months. The purpose of this paper is to analyse the real state of heavy weather and high sea phenomena on the vesscls at sea, thus helping mariners operate in such conditions.

  • PDF

북극진동의 자기상관 특성 및 우리나라 장마 및 태풍과의 교차상관 특성 평가 (Evaluation of autocorrelation characteristics of arctic oscillation and its cross-correlation to the monsoon and typhoon)

  • 이현욱;송성욱;유철상
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1247-1260
    • /
    • 2018
  • 본 연구에서는 북극진동이 우리나라에 미치는 영향을 파악하고자 북극진동지수(AOI)와 북태평양에서 발생한 태풍의 개수 및 우리나라에 영향을 준 태풍의 개수, 또한 장마기간 중 총강수량 및 장마기간 중 강수일수와의 교차상관분석을 시도하였다. AOI 자료는 월단위 형태로 존재하나 교차 상관 분석에는 1월을 중심으로 한 평균 자료와 봄, 여름, 가을, 겨울의 계절자료를 이용하였다. 장마 특성 및 태풍 특성 자료는 모두 연 단위자료이다. 본 연구에서는 AOI 및 태풍, 장마 자료의 가용성을 고려하여 1961년에서 2016년 사이의 자료를 이용하였다. 본 연구에서의 결과를 종합해 보면, 북극진동은 우리나라의 장마 특성에 약한 수준이나 유의하게 영향을 미치고 있음을 확인할 수 있었다. 그러나 그 정도는 전체기간에 대해 일정하지 않으며 시기에 따라 크게 다른 것으로 나타난다. 예를 들어, 최근 10년간 북극진동이 장마에 미친 영향은 교차상관계수로 0.8 이상이다. 그러나 그 전 30년간은 통계학적으로 유의한 영향은 없었다. 이와는 반대로 북극진동이 우리나라에 영향을 준 태풍의 개수에 미치는 영향은 전체적으로는 유의하지 않은 것으로 나타난다. 공교롭게도 부분적으로 보면 이 역시 기간에 따라 유의한 영향과 유의하지 않은 영향이 반복적으로 교차하는 모습을 보인다. 즉, 기간에 따라 북극진동의 영향은 비정상적으로 크게 변동하는 모습을 보인다. 또한, 북극진동이 우리나라의 장마와 태풍에 미치는 영향이 과거 1960년대에서 2000년대까지 서로 교차되는 특성을 보여 왔다는 점에 주목할 필요가 있다. 그러나 공교롭게도 2010년대에 들어서면서 장마에의 영향과 태풍에의 영향이 둘 다 증가하는 형태로 바뀐 것으로 보인다.

Modelling land surface temperature using gamma test coupled wavelet neural network

  • Roshni, Thendiyath;Kumari, Nandini;Renji, Remesan;Drisya, Jayakumar
    • Advances in environmental research
    • /
    • 제6권4호
    • /
    • pp.265-279
    • /
    • 2017
  • The climate change has made adverse effects on land surface temperature for many regions of the world. Several climatic studies focused on different downscaling techniques for climatological parameters of different regions. For statistical downscaling of any hydrological parameters, conventional Neural Network Models were used in common. However, it seems that in any modeling study, uncertainty is a vital aspect when making any predictions about the performance. In this paper, Gamma Test is performed to determine the data length selection for training to minimize the uncertainty in model development. Another measure to improve the data quality and model development are wavelet transforms. Hence, Gamma Test with Wavelet decomposed Feedforward Neural Network (GT-WNN) model is developed and tested for downscaled land surface temperature of Patna Urban, Bihar. The results of GT-WNN model are compared with GT-FFNN and conventional Feedforward Neural Network (FFNN) model. The effectiveness of the developed models is illustrated by Root Mean Square Error and Coefficient of Correlation. Results showed that GT-WNN outperformed the GT-FFNN and conventional FFNN in downscaling the land surface temperature. The land surface temperature is forecasted for a period of 2015-2044 with GT-WNN model for Patna Urban in Bihar. In addition, the significance of the probable changes in the land surface temperature is also found through Mann-Kendall (M-K) Test for Summer, Winter, Monsoon and Post Monsoon seasons. Results showed an increasing surface temperature trend for summer and winter seasons and no significant trend for monsoon and post monsoon season over the study area for the period between 2015 and 2044. Overall, the M-K test analysis for the annual data shows an increasing trend in the land surface temperature of Patna Urban.

Time Slice 실험으로 모의한 동아시아 여름몬순의 변화 (Possible Changes of East Asian Summer Monsoon by Time Slice Experiment)

  • 문자연;김문현;최다희;부경온;권원태
    • 대기
    • /
    • 제18권1호
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

몬순기후형 중온 개질 아스팔트 혼합물의 역학적 물성 평가 연구 (Evaluation on Mechanical Properties of Polymer-Modified Warm-Mix Asphalt Mixtures for Monsoon Climate Regions)

  • 이강훈
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.131-141
    • /
    • 2017
  • PURPOSES : The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS : Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS :The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS :Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.