• Title/Summary/Keyword: Monsoon Climate

Search Result 165, Processing Time 0.02 seconds

A Study on Estimate of Sediment Yield Using Tank Model in Oship River Mouth of East Coast (Tank 모형을 이용한 동해안 오십천 하구의 유사량 평가에 관한 연구)

  • Kang, Sank-Hyeok;Ok, Yong-Sik;Kim, Sang-Ryul;Ji, Jeong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.268-274
    • /
    • 2011
  • BACKGROUND: A large scale of sediment load delivered from watershed causes substantial waterway damages and water quality degradation. Controlling sediment loading requires the knowledge of the soil erosion and sedimentation. The various factors such as watershed size, slope, climate, land use may affect sediment delivery processes. Traditionally sediment delivery ratio prediction equations have been developed by relating watershed characteristics to measured sediment yield divided by predicted gross erosion. However, sediment prediction equations have been developed for only a few regions because of limited sediment data. Besides, little research has been done on the prediction of sediment delivery ratio for asia monsoon period in mountainous watershed. METHODS AND RESULTS: In this study Tank model was expanded and applied for estimating sediment yield to Oship River of east coast. The rainfall-runoff in 2006 was verified using the Tank model and we derived good result between observed and calculated discharge in 2009 at the same conditions. In relation to sediment yield, the sediment delivery rate of 2006 was very high than 2009 regardless of methods for estimating sediment load. It was thought to be affected by heavy rainfall due to the typhoon. CONCLUSION(s): For estimating sediment volume from watershed, long-term monitoring data on discharge and sediment is needed. This model will be able to apply to predict discharge and sediment yield simultaneously in ungauged area. This approach is more effective and less expensive method than the traditional method which needs a lot of data collection.

Behavior of Clear-water Phase in Hybrid Water System with Fluvial and Lacustrine Characteristics (하천-호수 복합시스템에서 청수현상 발생 특성)

  • Sim, YounBo;Byeon, Myeong-Seop;Kim, Jae-Hyun;Yoo, Soon-Ju;Im, Jong-Kwon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • The clear-water phase (CWP) is a notable limnological phenomenon in freshwater systems caused by predatory interactions between large filter-feeding zooplankton and phytoplankton. However, the mechanisms and factors that influence the extent of CWP, particularly in complex water systems with both fluvial and lacustrine characteristics, remain poorly understood. The present study evaluated CWP occurrence patterns at different sites in a large reservoir located in a temperate monsoon region (Lake Paldang, Korea); the relationships among factors associated with CWP occurrence, such as transparency, zooplankton diversity, and chlorophyll a concentration were investigated. Transparency exhibited significant correlations with precipitation and retention time, as well as the relative abundance of zooplankton (p<0.01), suggesting that a change in the retention time due to precipitation can alter CWP. Data collected before and after CWP occurrence were analyzed using paired t-test to determine variations in CWP occurrence based on the water system characteristics. The results demonstrated that various factors were associated with CWP occurrence in the fluvial-type and lacustrine-type sites. The correlation between zooplankton biomass and transparency was stronger in the lacustrine-type sites than in the fluvial-type sites. The lacustrine-type sites, where cladoceran emergence is common and is associated with long retention times, favored CWP occurrence. The results suggest that lacustrine-type sites, which are conducive to zooplankton development and have relatively long retention times, enhance CWP occurrence. Furthermore, CWP occurrence was notable in spring, and the present study revealed that site-specific CWP could occur throughout the year, regardless of the season.

Karst Studies in the Korean Geographical Society: Achievements for the Past Fifty Years (한국 지리학계의 카르스트 연구)

  • PARK, Sunyurp
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.127-140
    • /
    • 2011
  • Research achievement of Korean geographers on karst studies was evaluated based on the number of publications for the past fifty years, which were divided into four main periods, including beginning, youth, growth, and maturity stages. The descriptive statistics of research papers published in major geography journals were computed and these articles were classified according to their main subjects and study areas. The role of moisture is particularly important in Karst geomorphology compared to the other geomorphological fields. The morphology, landscape, and formation processes of tropical and temperate karst are different from each other, and the regional and altitudinal characteristics of karst environments are significantly diverse. Thus, it is likely that the detailed records of climatic changes are preserved in the northeast Asian karst landform. Since karst geomorphology can be a major cause of natural hazards, such as collapsed surfaces or subsidence, which are associated with anthropogenic activities, including underground-water pumping and land use, education and training of physical geographers, specializing on monsoon effects, distributions of limestone, and soil characteristics, are critical issues to foster the capacity of disaster management in the nation. Moreover, knowing that the unique and spectacular landscape of karst geomorphology is a valuable, natural resource of tourism and has aesthetic values on its own, contributions of geographers to the introduction, conservation, research, and development of karst environment should be emphasized.

Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer (광음향 및 네펠로미터 방식을 이용한 에어로졸 흡수 및 산란계수 측정)

  • Kim, Ji-Hyoung;Kim, Sang-Woo;Heo, Junghwa;Nam, Jihyun;Kim, Man-Hae;Yu, Yung-Suk;Lim, Han-Chul;Lee, Chulkyu;Heo, Bok-Haeng;Yoon, Soon-Chang
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.185-191
    • /
    • 2015
  • Ambient measurements of aerosol light absorption (${\sigma}_a$) and scattering coefficients (${\sigma}_s$) were done at Gosan climate observatory during summer 2008 using a 3-wavelength photoacoustic soot spectrometer (PASS). PASS was deployed photoacoustic method for light absorption and integrated nephelometry for light scattering measurements. The ${\sigma}_a$ and ${\sigma}_s$ from PASS were compared with those from co-located aethalometer and nephelometer measurements. The aethalometer measurements of ${\sigma}_a$ correlated reasonably well with photoacoustic measurements, but the slope of the linear fitting line indicated the PASS measurement values of ${\sigma}_a$ were larger by a factor of 1.53. The nephelometer measurement values of ${\sigma}_s$ correlated very well with PASS measurements of ${\sigma}_s$, with a slope of 1.12 and a small offset. Comparing to the aethalometer measurements, the photoacoustic measurements of ${\sigma}_a$ didn't exhibit a significant (i.e., the ratio between aethalometer and PASS increased) change with increasing relative humidity (RH). The ratio of ${\sigma}_s$ between nephelometer and PASS increased with increasing RH, especially when the RH increased beyond 80%. This apparent increase in ${\sigma}_s$ with RH may be due to the contribution of hygroscopic growth of aerosols.

A Proposal for Simplified Velocity Estimation for Practical Applicability (실무 적용성이 용이한 간편 유속 산정식 제안)

  • Tai-Ho Choo;Jong-Cheol Seo; Hyeon-Gu Choi;Kun-Hak Chun
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2023
  • Data for measuring the flow rate of streams are used as important basic data for the development and maintenance of water resources, and many experts are conducting research to make more accurate measurements. Especially, in Korea, monsoon rains and heavy rains are concentrated in summer due to the nature of the climate, so floods occur frequently. Therefore, it is necessary to measure the flow rate most accurately during a flood to predict and prevent flooding. Thus, the U.S. Geological Survey (USGS) introduces 1, 2, 3 point method using a flow meter as one way to measure the average flow rate. However, it is difficult to calculate the average flow rate with the existing 1, 2, 3 point method alone.This paper proposes a new 1, 2, 3 point method formula, which is more accurate, utilizing one probabilistic entropy concept. This is considered to be a highly empirical study that can supplement the limitations of existing measurement methods. Data and Flume data were used in the number of holesman to demonstrate the utility of the proposed formula. As a result of the analysis, in the case of Flume Data, the existing USGS 1 point method compared to the measured value was 7.6% on average, 8.6% on the 2 point method, and 8.1% on the 3 point method. In the case of Coleman Data, the 1 point method showed an average error rate of 5%, the 2 point method 5.6% and the 3 point method 5.3%. On the other hand, the proposed formula using the concept of entropy reduced the error rate by about 60% compared to the existing method, with the Flume Data averaging 4.7% for the 1 point method, 5.7% for the 2 point method, and 5.2% for the 3 point method. In addition, Coleman Data showed an average error of 2.5% in the 1 point method, 3.1% in the 2 point method, and 2.8% in the 3 point method, reducing the error rate by about 50% compared to the existing method.This study can calculate the average flow rate more accurately than the existing 1, 2, 3 point method, which can be useful in many ways, including future river disaster management, design and administration.