• Title/Summary/Keyword: Monomeric species

Search Result 42, Processing Time 0.018 seconds

Changes in the Removal Efficiency of Total Phosphorus by the Basicity of Al(III) Coagulant (Al(III) 응집제의 염기도에 따른 총인 제거효율의 변화)

  • Han, Seung-Woo;Lee, Chul-Hee;Lee, Jae-Kwan;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2012
  • The analysis of Al (III) hydrolysis species with PACls prepared by different basicity showed that mononmeric Al species were reduced while precipitate Al species were increased with an increase in basicity for PACls. In the case of the PACl with 13.6% basicity, monomeric Al species were 81%, polymeric Al (III) species 19%, precipitate Al (III) species was 0%, as showing the dominant monomeric Al species. The PACl with 13.6% basicity showed above 80% of turbidity removal efficiency without any restabilization. In addition, the PACl with 13.6% basicity showed higher organic removal expressed by $UV_{254}$ which was caused by lower coagulation pH. The PACl containing the higher amount of monomeric Al species was the most beneficial for T-P and $PO_{4}-P$ removal.

Catalytic Properties of Monomeric Species of Brain Pyridoxine-5'-phosphate Oxidase

  • Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.21-27
    • /
    • 2001
  • The structural stability of brain pyrydoxine-5'-phosphate (PNP) oxidase and the catalytic properties of the monomeric species were investigated. The unfolding of brain pyridoxine-5'-phosphate (PNP) oxidase by guanidine hydrochloride (GuHCl) was monitored by means of fluorescence and circular dichroism spectroscopy Reversible dissociation of the dimeric enzyme into subunits was attained by the addition of 2 M GuHCl. The perturbation of the secondary structure under the denaturation condition resulted in the release of the cofactor FMN. Separation of the processes of refolding and reassociation of the monomeric species was achieved by the immobilization method. Dimeric PNP oxidase was immobilized by the covalent attachment to Affi-gel 15 without any significant lass of its catalytic activity. Matrix-bound monomeric species were obtained from the reversible refolding processes. The matrix bound-monomer was found to be catalytically active, possessing only a slightly decreased specific activity when compared to the refolded dimeric enzyme. In addition, limited chymotrypsin digestion of the oxidase yields two fragments of 12 and 161 kDa with a concomitant increase of catalytic activity The catalytically active fragment was isolated by ion exchange chromatography and analyzed for association of two subunits using the FPLC gel filtration analysis. The retention time indicated that the catalytic fragment of 16 kDa behaves as a compact monomer. Taken together, these results are consistent with the hypothesis that the native quaternary structure of PNP oxidase is not a prerequisite for catalytic function, but it could play a role in the regulation.

  • PDF

Removal Mechanism of Phosphorus in Wastewater Effluent using Coagulation Process (응집공정을 이용한 하수처리수 중의 인 제거 Mechanism)

  • Han, Seung-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.774-779
    • /
    • 2010
  • The experimental results for the analysis of aluminum hydrolysis species with PACls (polyaluminum chloride) prepared by different basicity (r value) showed that monomeric Al species were reduced while polymeric Al species were increased with an increase in basicity for PACls. The PACl with 2.2 of r value contained the highest amount of polymeric Al species. According to the experimental results for the phosphorus removal, the alum and PACl (r=0), which consisted of mainly monomeric Al species, were the most effective for phosphorus removal. Therefore, it was concluded that the Al coagulant containing higher amount of monomeric or lower molecular Al species would be more beneficial for phosphorus removal.

Fourier Transform Infrared Matrix Isolation Study of Acetonitrile in Solid Argon

  • Hack Sung Kim;Kwan Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.520-526
    • /
    • 1992
  • The intramolecular fundamental vibrations of $CH_3CN$ trapped in solid argon matrix have been reinvestigated by means of FT-IR spectroscopy in the spectral range of 4000-500 $cm^{-1}$. By employing a quantum detector, infrared spectra could be obtained at matrix to solute ratio of 10000, allowing the clarification of the peaks due to monomeric species more clearly. Temperature controlled diffusion was initiated to identify the dimeric and polymeric species in terms of difference spectra. The assignments of monomeric and dimeric species are found, in general, to agree with the earlier work performed at higher concentration (Ar/$CH_3CN$ = 1500) using a dispersive spectrometer. Nonetheless the difficulty of minute differences between the earlier infrared and Raman spectroscopic results could be resolved. Moreover, the previously unnotified peaks due to polymeric species have been identified.

Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate

  • Yoon, Ju-Yeon;Cho, In-Sook;Choi, Gug-Seoun;Choi, Seung-Kook
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • Chrysanthemum stunt viroid (CSVd), a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1) were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants.

Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process (응집공정에서 발생하는 알루미늄 가수분해종 분포특성)

  • Song, Yu-Kyung;Jung, Chul-Woo;Hwangbo, Bong-Hyung;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.

Composition and Partial Structure Characterization of Tremella Polysaccharides

  • Khondkar, Proma
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • Heteropolysaccharides isolated from liquid cultures of nine Tremella species contained 0.3 to 1.2% protein, 2.7 to 5% ash, 0.9 to 3.4% acetyl groups, 76.5 to 84.2% carbohydrates and trace amounts of starch. The polysaccharides in aqueous solution were slightly acidic (pH 5.1 to 5.6). They consisted of the following monomeric sugars: fucose, ribose, xylose, arabinose, mannose, galactose, glucose and glucuronic acid. The backbones of the polysaccharide structures consisted of $\alpha$-(1$\rightarrow$3)-links while the side chains were $\beta$-linked.

Self-Aggregation of Synthetic Magnesium Bacteriochlorins as a Photosynthetic Antenna Model

  • Kunieda, Michio;Mizoguchi, Tadashi;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.353-355
    • /
    • 2002
  • We prepared 3-(1-hydroxyethyl)-bacteriopyrochlorophy11-a (3) possessing magnesium atom and phytyl ester from modification of natural bacteriochlorophyll(BChl)-a. A dichloromethane solution of (3$^1$R) and (3$^1$S)-3 was diluted with 100~1000 fold volume of cyclohexane to give new species absorbing near-infrared lights. The resulting Q, maximum of (3$^1$R)-3 was 860 nm and red-shifted by 2150 $cm^{-1}$ / from the monomeric. In the nonpolar organic solvent, epimeric (3$^1$S)-3 showed a 1ess red-shifted peak at 798 nm as well as a residual monomeric band. Such visible spectra indicated that 3 diastereose1ectively aggregated in cyclohexane to afford oligomers possessing a simi1ar supramolecular structure with chlorosomal aggregates of natural BChl-d, 7,8-dehydro-form of 3.

  • PDF

Pressure titration of the monomeric variant of transthyretin

  • Bokyung Kim;Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.1
    • /
    • pp.1-4
    • /
    • 2023
  • Transthyretin (TTR) is an indispensable transporter protein of thyroxine and a retinol molecule in humans. TTR has a stable homo-tetrameric structure in its native state, while upon dissociation into monomers, it becomes aggregation-prone and can form an amyloid fibril. Although the amyloidogenic propensity of TTR has been known and investigated since the late 1990s, the structural information regarding TTR's amyloidogenic species is still elusive. Here, we employed high-pressure nuclear magnetic resonance (HP-NMR) approaches on the monomeric variant of TTR (TTR[F87M/L110M]; M-TTR) and observed that it experiences a two-step transition in response to the pressurized condition. Our study demonstrated that M-TTR in an ambient condition has heterogeneous structural features, which is likely related to the amyloidogenic propensity of TTR.

Development of a New Method for Total Isocyanate Determination Using the Reagent 9-Anthracenylmethyl 1-Piperazinecarboxylate(PAC):Part 1 - The reaction condition and stability (9-Anthracenylmethyl 1-Piperazinecarboxylate(PAC)을 이용한 공기중 총이소시아네이트 분석방법 개발:제1부 반응조건 및 안전성)

  • Roh, Young-Man;Streicher, Robert P.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 1999
  • A new analytical procedure for the measurement of monomeric isocyanates and total isocyanate group in workplaces has been investigated. The method described herd involves derivatization of the isocyanate sample upon collection with the reagent 9-anthracenylmethyl 1-piperazinecarboxylate (PAC). Laboratory investigations have demonstrated that excess PAC reagent can be satisfactorily removed from PAC-derivatized monomeric isocyanates-a requirement for the success f the analytical procedure. After removal of excess PAC reagent, the PAC derivatives of butyl isocyanate, phenyl isocyanate, HDI, MDI, and TDI were reacted with sodium thiomethoxide to convert them all to 9-anthracenylmethyl methyl sulfide (AMMS). Total isocyanate group was determined by HPLC analysis and quantification of the single AMMS peak. This circumvents many of the disadvantages associated with current HPLC methods. There were no longer problems associated with quantifying late-eluting peaks and analysis times were very short. A single detector was used for quantification because a standard of the analyte existed and the retention time could be determined. Because all species were converted to a single analyte, the problem of variability of response factors among different species was averted. Finally, there were no complex chromatograms to interpret. Monomers of other individual species were measured by analysis of the sample before the individual species were converted to AMMS. The favorable performance of PAC warrants its further study as a reagent for the determination of total isocyanate group in air.

  • PDF