• Title/Summary/Keyword: Monoethanolamine (MEA)

Search Result 59, Processing Time 0.021 seconds

Analysis of Amine Absorbents Volatility Based on the Chemical Structure (아민 흡수제의 화학구조에 따른 휘발 특성)

  • Lee, Kyung Ja;Lee, Ji Hyun;Kwak, No Sang;Lee, In Young;Kim, Jun Han;Eom, Yong Seok;Jang, Kyung Ryoung;Shim, Jae Goo;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.348-352
    • /
    • 2012
  • Amine volatility occurring on the $CO_2$ capture process may result in significant economic losses and environmental impact. In this study, using an volatility measurement apparatus, we measured a amine volatility of various amines including MEA(Monoethanolamine), MDEA(N-Methyldiethanolamine), Pz(Piperazine), AMP(2-Amino-2-methyl-1-propanol), 2-MP(2-Methylpiperazine), DGA(Diglycolamine). For the quantitative analysis of volatility, we analyzed the effects of temperature and $CO_2$ loading using an gas chromatography analysis. The result shows that the amine volatility was increased by increasing Henry's constant(MDEA$-CH_3$)(for AMP).

Characteristics of $CO_2$ Adsorption by MEA Impregnated MCM-41 (MEA가 힘침된 MCM-41 흡착제의 $CO_2$ 흡착 특성)

  • Lee, Jung-Beom;Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.686-691
    • /
    • 2011
  • The $CO_2$ adsorption and characteristics of mesoporous silica MCM-41 impregnated by MEA (Monoethanolamine) were examined in this study. The adsorbents were characterized by XRD (X-ray powder diffraction), FT-IR (Fourier transform infrared spectroscopy), $N_2$ adsorption-desorption isotherms. $CO_2$ adsorption measurements were carried out using a GC-TCD unit using 15% $CO_2$ gas. The $CO_2$ adsorption capacity of MCM-41 increased by MEA contents to 10~40 wt%, otherwise MEA content of 50 wt% was decreased $CO_2$ adsorption capacity. The amines tended to deform at MCM-41 surface if too many amines were provided. Therefore $CO_2$ adsorption capacity can be decreased. The results of this study suggest it is important to control content of MEA in MCM-41 for adsorption of $CO_2$.

Enhancement in the Amine Resistance of Membranes for Membrane Contactors by Plasma Treatment (플라즈마를 이용한 막접촉기용 막의 아민 용액에 대한 저항성 향상)

  • Choi, Seung-Hak;Oh, Sae-Joong;Cho, Nam-Joon;Koo, Ja-Kyung
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.719-724
    • /
    • 2002
  • Celgard and Durapore membranes were plasma-treated to enhance the hydrophobicity and durability to amine solution. The plasma gases or vapors used were $CF_4$, Hexafluorobenzene(HFP), Pentafluoropyridine(PFP) and Hexamethyldisiloxane(HMDS). The surface structure of plasma treated membranes was analyzed by FT-IR spectra. The contact angles of plasma treated Celgard and Durapore were dependent of the plasma gases used. $CF_4$ and HMDS plasma increased the contact angles of Celgard and Durapore, while HFB and PFP plasma decreased the contact angles. Durability to monoethanolamine(MEA) solution was enhanced for $CF_4$ plasma-treated Durapore, while the durability was not good for plasma-treated Celgard.

A Study on the Absorption of $CO_2$Using Alkanolamine Solution (Alkanolamine계 수용액을 이용한 이산화탄소 흡수에 관한 연구)

  • 이성남;송호철;현재휴;박진원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.407-414
    • /
    • 2001
  • In this study, the absorption kinetics of $CO_2$onto a mixture of AMP (2-amino-2-methyl-1-propanol) MEA (monoethanolamine) water were investigated at 30 and 4$0^{\circ}C$ using a packed absorption tower. Solubility and absorption rate of $CO_2$into alkanolamine solutions and optimal condition of $CO_2$absorption process were investigated. The experimental conditions are as follows; temperature of 30 and 4$0^{\circ}C$, gas flow rate of 3ι/min for the absorption tower, and liquid flow rate of 0.1ι/min. Feed gas was a mixture of 85% $N_2$and 15% $CO_2$. The experimental results showed that AMP had greater solubilities and faster absorption rates than MEA and DEA. In addition, MEA had the fastest initial reaction rate. To improve the properties of AMP which have low initial reaction rate and high cost, AMP was used with MEA. The mixing ratio was also changed in constant total molarity of 1,2,3 and 4. The experimental results can be summarized as follows: (1) in solubility experiment, the addition of MEA in constant total polarity decreased the solubility of $CO_2$in AMP/MEA mixture. (2) from 0 to about 0.3 in mixing ratio, the solubility of $CO_2$in AMP/MEA mixture had little differences compared with the sum of solubility of AMP only and solubility of MEA only . (3) mixing ratio of 0.3 was found to be an optimal point with the fastest $CO_2$absorption rate.

  • PDF

Vaporization and Conversion of Ethanolamines used in Metalworking Operations

  • Kim, Shin-Bum;Yoon, Chung-Sik;Park, Dong-Uk
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • Objectives: This study examined how ethanolamines (EAs) with the same functional alcohol group ($HOCH_2CH_2$), such as mono-EA (MEA), di-EA (DEA), and tri-EA (TEA), in water-based metalworking fluids (wbMWFs) are vaporized, condensed, and transformed by heat generated during metalworking. Methods: Two types of experimental apparatus were manufactured to achieve these objectives. Results: Vaporization tests using a water bath showed that the vaporization rate increased markedly from $0.19\;mg/m^2{\cdot}min$ at $23.5^{\circ}C$ to $8.04\;mg/m^2{\cdot}min$ at $60^{\circ}C$. Chamber tests with a heat bulb revealed that "spiked" MEA was fully recovered, while only 13.32% of DEA and no TEA were recovered. Interestingly, non-spiked types of EAs were detected, indicating that heat could convert EAs with more alcohol groups (TEA or DEA) into other EAs with fewer group(s) (DEA or MEA). The EA composition in fresh fluid was 4% DEA, 66% TEA, and 30% MEA, and in used fluids (n = 5) was 12.4% DEA, 68% TEA, and 23% MEA. Conversion from TEA into DEA may therefore contribute to the DEA increment. Airborne TEA was not detected in 13 samples taken from the central coolant system and near a conveyor belt where no machining work was performed. The DEA concentration was $0.45\;mg/m^3$ in the only two samples from those locations. In contrast, airborne MEA was found in all samples (n = 53) regardless of the operation type. Conclusion: MEAs easily evaporated even when MWFs were applied, cleaned, refilled, and when they were in fluid storage tanks without any metalworking being performed. The conversion of TEA to DEA and MEA was found in the machining operations.

Kinetics of $CO_2$ Absorption in Aqueous AMP (2-amino-2-methyl -1-propanol) Solutions

  • Park, Moon-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 1998
  • The reaction rate of $CO_2$ with 2-amino-2-methyl-1-propanol (AMP), MEA monoethanolamine(MEA) and diethanolamine (DEA) in aqueous solutions has been determined using a stirred vessel with a plane gas-liquid interface over a wide range of concentrations of amines at different temperatures. The results show that the overall reaction rate is first order with respect to both $CO_2$ and amine. The reaction rate constant varies with temperature according to the relationship which agrees with the experimental data. The proposed interpretation is that the kinetic rate determining step is a reaction of $CO_2$ with amine to form carbamic acid which is then totally and immediately ionized.

  • PDF

Kinetics of $CO_2$ Absorption in Aqueous AMP (2-amino-2-methyl-1-propanol) Solutions

  • Park, Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 1993
  • The reaction rate of $CO_2$ with 2-amino-2-methyl-1-propanol (AMP), MEA monoethanolamine (MEA) and diethanolamine (DEA) in aqueous solutions has been determined using a stirred vessel with a plane gas-liquid interface over a wide range of concentrations of amines at different temperatures. The results show that the overall reaction rate is first order with respect to both $CO_2$ and amino. The reaction rate constant varies with temperature according to the relationship which agrees with the experimental data. The proposed interpretation is that the kinetic rate determining step is a reaction of $CO_2$ with amine to form carbamic acid which is then totally and immediately ionized.

  • PDF

Degradation Characteristics of Aqueous MEA Solution by Corrosion Products and Absorption Conditions (흡수 조건 및 부식 생성물에 의한 MEA 수용액의 변성 특성)

  • NAM, SUNGCHAN;SONG, YOONAH;BAEK, ILHYUN;YOON, YEOIL;YOU, JEONGKYUN;LEE, CHANGHA
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.290-297
    • /
    • 2016
  • The absorbent loss due to degradation in $CO_2$ capture process using aqueous alkanol amine solution has adverse effect on the economics of overall process. The degradation causes absorbent loss, equipment corrosion, foaming, adhesive material producing and viscosity increase in operation. In this study, the degradation characteristics of $CO_2$ capture process using MEA (monoehtanolamine) under various conditions such as $O_2$ partial pressure, $CO_2$ loading and absorbent temperature. The effects of iron, which generated from the equipment corrosion, on absorbent degradation were studied using $Fe_2SO_4$ containing MEA solution. The produced gases were analyzed by FT-IR(Fourier Transform Infrared Spectrophotometer) and the specifically measured $NH_3$ concentration was used as a degradation degree of aqueous MEA solution. The experiments showed that the higher $CO_2$ loadings (${\alpha}$), $O_2$ fraction ($y_{O2}$) and reaction temperature enhanced the more degradation of aqueous MEA solution. Comparing other operation parameters, the reaction temperature most affected on the degradation. Therefore, it could be concluded that the above parameters affects on degradation should be considered for the selections of $CO_2$ absorbent and operating conditions.

Analysis on Chemical Ingredients with Anti-microbial Activity in Water-based Metalworking Fluids

  • Park, Dong-Uk;Lee, Jong-Hang;Yoon, Chung-Sik;Lee, Kwon-Sup;Park, Deok-Mook
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.213-216
    • /
    • 2003
  • This study was conducted to estimate if the level of several chemical ingredients including alkanolamines or ethanolamines (EA) examined in the specific synthetic metalworking fluid (MWF) “A” can cause anti-microbial activity and health effect. Three water-based MWF products (“A”, “B”, and “C”) were studied every week for two months (from June 1, 2002 to July 30, 2002). Chemical ingredients such as formaldehyde, boron, EA, and copper were examined. In the sump where MWF “A” was used, not only the total level of EA, monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA), but also boron level were significantly higher than those of the other MWFs. ANOVA statistical tests indicated that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF A were significantly higher than those in other MWF types. Correlation tests also found that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF “A” are significantly correlated. We suggested the assumptions that excessive concentrations of EA, and borate at a high pH level, may cause anti-microbial resistance synergically, To demonstrate this assumption, additional study is needed to examine the relationship between the levels of microbes and excessive concentrations of EA, and borate at a high pH level.

  • PDF

A Study on the Separation of $CO_2$from Flue Gas by Chemical Absorption (화학흡수법에 의한 연소폐가스 중 지구온난화 가스 $CO_2$분리에 관한 연구)

  • 안성우;김영국;송호철;박진원
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • This study is on the separation of Global warming effect gas, CO$_2$by chemical absorption from mixture of CO$_2$-N$_2$which was modeled after flue gas of fire power plant. Investigation of optimum condition for absorbent was carried out by using sparged vessel apparatus. Through packed tower experiments, applicabilities of two absorption models were tested by comparing experimental results with theoretical values. Absorbent used in the experiments was Monoethanolamine (MEA) and gas mixture was made in the mole composition of 15% CO$_2$and 85% N$_2$. Through estimations of CO$_2$loading and CO$_2$removal efficiency, optimum concentration of absorbent was found in the range of 4-5 M. To find a rate of absorption, an enhancement factor was introduced. Values of rate of absorption were calculated by Film model and Higbie model, respectively. Higbie model showed good agreement with experimental results. Therefore, this models is considered to be applicable to the CO$_2$separation process for flue gas from fire power plant.

  • PDF