• 제목/요약/키워드: Monodispersed spherical particles

검색결과 22건 처리시간 0.023초

금속 알콕사이드로부터 구형의 단분산 Y-doped $ZrO_2$ 미립자 제조 (Preparation of Spherical Monodispersed Y-doped ZrO2 Powders from Metal Alkoxide)

  • 김병익;이중윤;최상흘
    • 한국세라믹학회지
    • /
    • 제29권2호
    • /
    • pp.119-126
    • /
    • 1992
  • 3 mol% Y2O3-doped ZrO2 powders were prepared by hydrolysis with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mol/ιH2O/ethanol into 0.1 mol/ι zirconium and yttrium alkoside/ethanol. Spherical monodispersed yttria-partially stabilized zirconia particles with an average diameter of about 0.5 ${\mu}{\textrm}{m}$ were prepared by hydrolysis with 0.2 mol/ιH2O/ethanol. The as-prepared powder was amorphous and with heating it transformed into cubic up to 80$0^{\circ}C$ and into tetragonal over 100$0^{\circ}C$. 3 mol% Y2O3-doped ZrO2 powders calcined over and up to 80$0^{\circ}C$ were a mixture of tetragonal and monoclinic and only tetragonal as determined by X-ray diffraction, respectively.

  • PDF

졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향 (Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method)

  • 임영현;김도경;정영근
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.442-446
    • /
    • 2016
  • The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.

Homogeneous precipitation method를 통한 나노 YAG : Ce 형광체 합성과 광학 특성 (Synthesis and luminescence characteristics of nano-sized YAG : Ce phosphors by homogeneous precipitation method)

  • 이철우;권석빈;지은경;송영현;정병우;김은영;정몽권;윤대호
    • 한국결정성장학회지
    • /
    • 제27권1호
    • /
    • pp.18-21
    • /
    • 2017
  • 본 연구에서는 homogeneous precipitation method를 통하여 구형의 단분산(monodispersed) YAG : $Ce^{3+}$를 합성했다. 단분산 YAG : $Ce^{3+}$의 전구체를 합성하는 과정에서 aluminum ion들이 먼저 석출되어 aluminum 화합물을 형성하고 후에 yttrium 화합물들이 aluminum 화합물들의 표면에서 석출된다. 합성된 전구체를 파우더형태로 얻기 위해 건조과정을 거치는데, oven에서 건조했을 때 보다 동결건조기에서 건조했을 때 비교적 구형의 단분산 YAG : $Ce^{3+}$ 입자를 얻을 수 있었다. 하소 과정에서 공정을 진행하는 온도로서 $1100^{\circ}C$$1200^{\circ}C$를 비교해 보았다. 실험 결과 $1200^{\circ}C$의 온도로 상압에서 6시간 동안의 하소 과정을 진행하였을 때 400~500 nm 입자크기를 가진 단분산된 구형의 나노 YAG : $Ce^{3+}$ 입자가 합성되었다.

Zr(n-OC$_4$H$_9$)$_4$의 가수분해에 의한 선분산 지르코니아 분체의 합성에서 분산제 HPC의 첨가효과 (Effect of HPC Dispersant on Synthesis of Monodispersed Hydrated Zirconia Powder by Hydrolysis of Zr-n-butoxide)

  • 이전;조동수
    • 한국세라믹학회지
    • /
    • 제28권8호
    • /
    • pp.611-618
    • /
    • 1991
  • In the present study adding hydroxypropyl celluose as dispersant to the ethanol solution of Zr-butoxide prior to starting the hydrolysis reaction, spherical and submicrometer sized hydrated zirconia powders were synthesized successfully. But syntesized hydrated zirconia powders were soluble considerably in ethanol used as washing medium. Washing once the powder with plenty amount of water after washing thrice it with acetone, reaction mother solution remained between the particles was effectively removed and the particles were converted to insoluble state to ethanol at the same time. As a result of such washing processes it was able to prevent the formation of polydispersed, agglomerated and multiplet particles almost always even when such concentrated solutions of Zr-n-butoxide as 0.5 M were hydrolyzed.

  • PDF

Ethyl Silicate를 고순도 $\beta$-SiC미분말 합성에 관한 연구(I) 반응조건과 $\beta$-SiC의 생성율 및 특성 (A Study on Synthesis of High Purity $\beta$-SiC Fine Particle from Ethylsilicate(I) -Reaction Conditon, Yeild and Properties of $\beta$-SiC-)

  • 최용식;박금철
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.473-478
    • /
    • 1988
  • In order to obtain the high purity $\beta$-SiC powder that possesses the excellent sinterability and is close to the spherical shape, the carbon black was mixed into the composition of Si(OC2H5)4-H2O-NH3-C2H5OH which the monodispersed spherical fine particles is formed the hydrolysis of Ethylsilicate and the mixture was carbonized under an argon atmosphere. Particle shpae, size and the yield of $\beta$-SiC powder were investigated according to the molar ratio of carbon/alkoxide and variations of reaction temperature and reaction time. The results of this study are as follow ; 1) The yield of $\beta$-SiC gained from the reaction for one hour at 150$0^{\circ}C$ almost got near 100% and the particle size of $\beta$-SiC from the reaction for 15 hrs at 150$0^{\circ}C$ was 0.2${\mu}{\textrm}{m}$ on the average and close to the spherical shape agglomerate state. 2) When the molar ratio carbon/alkoxide is over 3.1 and the reaction occurs at 145$0^{\circ}C$ for 5hrs, the carbon content has not an effect on the kind of crystal of product.

  • PDF

고형오구 입자크기가 고형오구의 세척성에 미치는 영향 (The Effect of Particle Size on the Detergency of Particulate Soil)

  • 문미화;강인숙
    • 한국의류학회지
    • /
    • 제34권4호
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅 (Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method)

  • 김유진;유리;박은영;피재환;최의석
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

알콕사이드 가수분해법에 의핸 제조된 TiO$_2$ 분말을 이용한 Micad의 표면 개질 (Surface Modification of Mica Using TiO$_2$ prepared by Alkoxide Hydrolysis Method)

  • 한상필;윤영훈;이상훈;최성철
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.691-697
    • /
    • 1999
  • TiO2 powder was adsorbed on the surface of mica using the heterocoagulation method in water TiO2 powder was prepared from hydrolysis of titanium-iso propoxide in a mixed solvent of anhydrous ethanol and water. When the molar ratio of water to titanium iso-propoxide was 0.25 monodispersed spherical TiO2 particles were obtained. The prepared TiO2 powder showed anatase phase after heat treatment at 50$0^{\circ}C$ for 2 h and then transformed to rutile phase after heat treatment at 100$0^{\circ}C$ for 2h. The iso-electric points of TiO2 and Mica were pH 3.9 and pH 3.25 respectively which were measured by the Z-potential analysis in water base. The maximum Z-potential difference between two powders was observed in the range of pH 3.6~3.7 TiO2 powder was adsorbed on the surface of mica by heterocoagulation method in pH 3.6~3,7 The properties of prepared TiO2 powder was haracterized by TG-DTA, XRD and SEM The morphology and thermal properties of TiO2-adsorbed mica were examined.

  • PDF

Ethyl Silicate를 이용한 고순도 $\beta$-SiC미분말 합성에 관한 연구(II) (분말의 특성, 반응형식 및 활성화에너지) (A Studyon Synthesis of High Purity $\beta$-SiC Fine Particles from Ethyl Silicate(II) (Powder Properties, Reaction Type and Activation Energy))

  • 최용식;박금철
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.195-200
    • /
    • 1989
  • The Silica-Carbon mixture was made with addition of carbon black in the composition which monodispersed spherical fine silica was formed by the hydrolysis of ethylsilicate, mole ratio of Carbon/Alkoxide was 3.1 and $\beta$-SiC powder was synthesized by reacting this mixture at 1,350~1,50$0^{\circ}C$ in Ar atmosphere. The results of this study are as follow : (1) The purity of synthesized $\beta$-SiC powder was above 99.98% and it was in cubic modification with lattice constant of 4.3476$\AA$. (2) The rate-controlling steps varied with the reaction temperature for the syntehsis of $\beta$-SiC in this study ; nucleation and growth of $\beta$-SiC at 1,350~1,40$0^{\circ}C$, interfacial reaction at 1,45$0^{\circ}C$ and diffusion described by Jander Equation at 1,50$0^{\circ}C$. (3) When the rate-determining step was nucleation and growth, the activation energy was about 87.8kcal/mol.

  • PDF