• Title/Summary/Keyword: Monodisperse Micelle

Search Result 2, Processing Time 0.018 seconds

A Statistical-Mechanical Model for Solutions of Monodisperse Micelles (단분산 마이셀 용액의 통계 역학적 모델)

  • Kang, Kye-Hong;Lim, Kyung-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.824-832
    • /
    • 2008
  • micellar solution which is comprised of surfactant monomers, monodisperse micelles, and solvent(water) is studied from a statistical-mechanical point of view. The model examined in this article is for the ideal mixture of monomers, micelles, and solvent with the dielectric constant identical to that of solvent, which is an assumption common to continuum models. The model also reflects interactions between monomer and solvent molecule, and also between micelle and solvent molecule. The statistical-mechanical model under consideration yields ln $X_{CMC}=A+BT+C/T+D{\ln}T$ with $X_{CMC}$ being critical mcielle concentration (in mole fraction), being temperature, and A, B, C, D being constants which depend on the properties of the surfactant molecules. The statistical-mechanical model discussed in this article provides a theoretical basis on the thermal dependence of critical micelle concentration

A Polymeric Micellar Carrier for the Solubilization of Biphenyl Dimethyl Dicarboxylate

  • Chi, Sang-Cheol;Yeom, Dae-Il;Kim, Sung-Chul;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 2003
  • A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.