• Title/Summary/Keyword: Monodentate ligands

Search Result 16, Processing Time 0.021 seconds

Anion-Dependent Exocyclic Mercury(II) Coordination Polymers of Bis-dithiamacrocycle

  • Siewe, Arlette Deukam;Kim, Seulgi;Choi, Kyu Seong;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3459-3464
    • /
    • 2014
  • Synthesis and structural characterization of mercury(II) halides and perchlorate complexes (1-4) of bis-$OS_2$-macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type $[Hg(L)X_2]_n$ (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies outside the cavity is six-coordinate with a distorted octahedral geometry, being bound to four adjacent ligands via monodentate Hg-S bonds and two remaining sites are occupied by two terminal chlorido ligands to form a fishnet-like 2D structure. When reacting with mercury(II) iodide, L afforded a 1D coordination polymer $\{[Hg_2(L)I_4]{\cdot}CHCl_3\}_n$ (3) in which each exocyclic Hg atom is four-coordinate, being bound to two sulfur donors from different ligands doubly bridging the ligand molecules in a head-to-tail mode. The coordination sphere in 3 is completed by two iodo terminal ligands, adopting a distorted tetrahedral geometry. On reacting with mercury(II) perchlorate, L forms solvent-coordinated 1D coordination polymer $\{[Hg_2(L)(DMF)_6](ClO_4)_4{\cdot}2DMF\}_n$ (4) instead of the anion-coordination. In 4, the Hg atom is five-coordinate, being bound to two sulfur donors from two different ligands doubly bridging the ligand molecules in a side-by-side mode to form a ribbon-like 1D structure. The three remaining coordination sites in 4 are completed by three DMF molecules in a monodentate manner. Consequently, the different structures and connectivity patterns for the observed exocyclic coordination polymers depending on the anions used are influenced not only by the coordination ability of the anions but also by anion sizes.

Chemical Equilibria of Lanthanides{Ln(III)=Pr, Sm, Gd, Dy}-Macrocyclic Complexes with Monodentate Ligands in $CH_3$OH(Part I) ($CH_3$OH용매에서 란탄족 원소{Ln(III)=Pr, Sm, Gd, Dy}-거대고리 착물과 한자리 리간드 간의 화학평형(제1보))

  • Byun, Jong Chul;Park, Yu Chul;Park, Shin Bok
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.257-263
    • /
    • 1999
  • Ln-macrocyclic([20]DOTA) complexes, [Ln([20]DPTA)(NO_{3})(H_{2}O)](NO_{3})_{2} \cdotxH_{2}O{Ln(III)=Pr, Sm, Gd, Dy}, which had been synthesized from 2, 6-diformyl-p-cresol(DFPC), was placed in methanol for 2 days, and $[Ln([20]DPTA)(NO_{3})(CH_{3}OH)]^{2+}$ was formed. The equilibrium constants(L) for the substitution of coordinated $CH_{3}OH$ in the Ln-[20]DOTA complexes by various auxiliary ligands, $L_{a}(=monodentate ligands; pyridine, imidazole, triethylamine, diethylamine, piperidine) were determined spectroscopically at $25^{\circ}C$ and 0.1M. The pKa of auxiliary ligand is in the order of pyridine < imidazole < triethylamine < diethylamine < piperidine, however the K has shown the trend of pyridine < imidzole < diethylamine < piperidine < triethylamine.

  • PDF

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part I); Synthesis and Characterization of Cr(III)-Benzoato and Chlorobenzoato Macrocyclic Complexes

  • Byun, Jong-Chul;Kim, Goo-Cheul;Han, Chung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.977-982
    • /
    • 2004
  • The reaction of $cis-[Cr([14]-decane)(OH_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = benzoate(bz) or chlorobenzoate(cbz)} leads to a new compound $[Cr([14]-decane)(bz)_2]ClO_4$ or $[Cr([14]-decane)(cbz)_2]ClO_4$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. The crystal structure of $[Cr([14]-decane)(cbz)_2]^+$ was determined. The complex shows a distorted octahedral coordination environment with the macrocycle adopting a folded cis-V conformation. The angle $N_{axial}-Cr-N_{axial}$ deviates by $14.5^{\circ}$ from the ideal value of $180^{\circ}$for a perfect octahedron. The bond angle cis-O-Cr-O between the Cr(III) ion and the two carboxylate oxygen atoms of the monodentate p-chlorobenzoate ligands is close to 90$^{\circ}$. The FAB mass spectra of the $cis-[Cr([14]-decane)(La)_2]ClO_4$ display peaks due to the molecular ions $[Cr([14]-decane)(bz)_2-H]^\;,\;[Cr([14]-decane)(cbz)_2-2H]^$ at m/z 578, 646, respectively.

Synthesis and Crystal Structures of Mn(II)- and Ni(II)-Dicarboxylate Complexes with 1,10-Phenanthroline

  • Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2299-2304
    • /
    • 2012
  • Two new metal(II) complexes, $[Mn(dpa)(phen)(H_2O)_2]_n$ (1) ($H_2dpa$ = dephenic acid, phen = 1,10-phenanthroline) and $[Ni_2(nda)(phen)_2(H_2O)_6](nda)(H_2O)$ (2) ($H_2nda$ = 2,6-naphthalenedicarboxylic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. In complex 1, Mn(II) ion is six-coordinated, and Mn(II) ions are bridged by dpa ligands into 1D chains. While, the complex 2 is dimer and two Ni(II) ions are bridged by one nda ligand cooperated with the terminal ligand phen. In each complex, the dicarboxylate ligand is coordinated to metal(II) ions as a bis-monodentate.

Coordination Chemistry of Organotin(IV) Dithiocarbamate Complexes

  • Jung, Ok-Sang;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.365-368
    • /
    • 1988
  • Coordination chemistry of organotin(IV) dithiocarbamate complexes has been examined in terms of far infrared and $^{119}Sn$-NMR spectroscopies. Although the Sn-S stretching vibrational bands of the complex could not be correlated with the bonding nature of the dithiocarbamate ligand, $^{119}Sn$ chemical shifts were sensitive enough to distinguish clearly the coordination number of tin, and as such the bonding mode of the dithiocarbamate ligand could be indentified to be monodentate or bidentate. Thus the $^{119}Sn$-NMR study on new cyclohexyltin(IV) dithiocarbamate complexes along with the known complexes suggests that the bonding mode of the dithiocarbamate ligands and the consequent coordination number of tin are determined mainly by the inductive effects of the organic groups attached to the tin atom.

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part II); Synthesis and Characterization of Cr(III)-Citrato Macrocyclic Complex

  • Byun, Jong-Chul;Park, Yu-Chul;Youn, Jeung-Su;Han, Chung-Hun;Lee, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.634-640
    • /
    • 2005
  • The reaction of cis-[Cr([14]-decane)(OH$_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = citrate(cit)} leads to a new dimeric complex cis-[{Cr([14]-decane)($\mu$-cit)}$_2](ClO_4)_2$. This binuclear complex has been structurally characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[{Cr([14]-decane)($\mu$-cit)})($_2]^+$ reveals that each chromium has a distorted octahedral coordination environment and citrato ligands are monodentate to the two chromium atoms via the carboxyl groups. For dimeric complex the bridging geometry is as follows: Cr$\ldots$Cr = 7.361 $\AA$; Cr-O(average) = 1.958 (8) $\AA$; Cr-N range = 2.108 (9)-2.147(9) $\AA$; N(1)-Cr-N(3) (equatorial position) = 98.0(4)$^{\circ}$; N(2)-Cr-N(4) (axial position) = 166.4(4)$^{\circ}$; O(1)-Cr-N(2) = 98.1(4)$^{\circ}$; O(3)-Cr-N(4) = 96.6(3)$^{\circ}$; O(1)-Cr-O(3) = 90.4$^{\circ}$. The FAB mass spectrum of the dimeric complex displays peak due to the molecular ions cis-[{Cr([14]-decane)($\mu$-cit)})($_2]^+$ at m/z 1053.

Transition Metal Catalyzed Carbonylation of Nitrobenzene for the Synthesis of N,N'-diphenylurea (균일계 전이금속 촉매를 이용한 니트로벤젠의 카르보닐화 반응 연구: N,N'-디페닐우레아 합성)

  • Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1079-1085
    • /
    • 1999
  • An investigation was made of the effect of various transition metal catalysts, ligands, and a promoter on the synthesis of N,N'-diphenylurea(DPU) from nitrobenzene, aniline, and carbon monoxide. Homogeneous Pd and Ni catalysts were found to be highly efficient, giving almost quantitative isolated DPU yields at 100% nitrobenzene conversion. Bidentate ligand, 1,3-bis(diphenylphosphino)proane(dppp) showed much improved activity and significantly different reactivity relative to the usual monodentate $PPh_3$ ligand in the presence of Ni and Pd catalysts. These results were inferred to the effect of the cis coordination of bidentate dppp ligand on the metal. The use of a promoter $Et_4NCl$ was indispensable in the case of $PPh_3$, yet inhibited the reaction if used with dppp. It was possible to reuse the Pd-dppp catalyst system, although the catalytic activity was reduced slowly.

  • PDF

Copper(II) Binding Mechanisms with Water Soluble Organic Fractions Extracted from Sewage Sludge Amended Soils (구리(II) 이온과 Sewage Sludge를 시용(施用)한 토양(土壤)에서 추출(抽出)한 수용성유기물(水溶性有機物)과의 착화합물(錯化合物) 형성방법(形成方法))

  • Lim, Hyung-Sik;Volk, V.V.;Baham, John
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.307-314
    • /
    • 1986
  • Cu(II) binding mechanisms with water soluble organic fractions (WSOF) extracted from an agricultural soil (W), a soil treated with sludge for 6 years ($WS_6$), a sludge-soil mixture incubated for one week ($WS_1$), and sewage sludge (SS) were studied by electron spin resonance (ESR) spectroscopy and potentiometric titrations. Cu(II)-WSOF complexes produced $g_{11}$ values which were larger than $g_{\perp}$ values, indicating that the coordination of Cu(II) complex was an elongated octahedron. At liquid $N_2$ temperature (77K), the Cu(II)-W complex showed an anisotropic ESR spectrum while the Cu(II)-SS complex showed an isotropic spectrum. These spectral results suggest that the oxygen donor ligands of W may form relatively strong bonds with $Cu^{2+}$ due to extensive chelation while ligands of SS may form little or no chelate bonds with $Cu^{2+}$. The ESR spectra of Cu(II)-SS complex also suggest that each of four in-plane ligands (e.g., $COO^-$, $H_2O$, $Cl^-$, etc.) may act independently as monodentate ligands. Oxygen donor ligands such as aromatic carboxyl groups were probably the major Cu(II) binding sites in W. Sulfonate, aliphatic carboxyl group, and N-containing ligands were probably the major binding sites in SS at pH 5. The Cu(II) complexation with N-containing groups increased as sludge was added to the soil. Much higher (6x) pyridine concentrations were required to displace W from Cu(II)-W complex as compared to the Cu(II)-SS complex.

  • PDF

Synthesis and Reaction Chemistry of Some Ferrocene-Containing Chelate Ligands with Dirhodium Acetate: X-ray Crystal Structure of $(\eta^1-(S,R)-CPFA)_2Rh_2(OAc)_4$

  • Kim, Eun-Jin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.990-996
    • /
    • 1994
  • New ferrocene-based chelate amines, $Fe[C_5H_4CH(Me)NMe_2]_2\;(3), \;Fe[C_5H-3(CH(Me)NMe_2)(PPh_2)-1,2]_2\;(4),\;(C_5H_5)Fe(C_5H_3(CH_2NMe_2)(CH(CN)NMe_2-1,2)\;(6),\;and\;(C_5H_5)Fe(C_5H_3(CH_2NMe_2)(CH(Me)NMe_2-1,2)$ (7) have been prepared. The reaction and the coordination chemistry of 4 and other related compounds (S,R)-(1-N,N-dimethylaminoethyl)-2-dicyclohexylphosphino)ferrocene (CPFA) and 1,1'-bis-(diphenylphosphino)ferrocene (BPPF) with $Rh_2(OAc)_4(MeOH)_2$ were investigated. The reaction of the chiral ligand (S,R)-CPFA forms a complex of the type (${\eta}^1$-(S,R)-CPFA-P)$_2Rh_2(OAc)_4$ (8) in which the ligand is coordinated to both rhodium centers in a monodentate fashion through phosphorus. In contrast, the bisphosphine analogues such as BPPF and 4 afford chelate complexes of the type (${\eta}^2-PP)Rh_2(OAc)_4$ (9 & 10) where both ligands act as a chelate bidentate to a single rhodium atom. All these complexes were characterized by microanalytical and spectroscopic techniques. In one case, the structure of 8 was determined by X-ray crystallography. Crystals are monoclinic, space group C2 (No. 5), with a=26.389 (3), b=12.942 (1), c=11.825 (1) A, ${\beta}$=111.22(1)$^{\circ}$, V=3964.7 (8) $A^3$, Z=4, and $D_{calc}$=1.58 g $cm^{-3}$. Two Rh(II) centers are bridged by four $AcO^-$ groups in the ${\eta}^1$ : ${\eta}^1$ mode across a Rh-Rh single bond, and octahedral coordination at Rh(1) and Rh(1') is completed by axially coordinating (S,R)-CPFA and a briding $AcO^-$, respectively.