• Title/Summary/Keyword: Monod constant

Search Result 16, Processing Time 0.019 seconds

The study on the $CO_2$ fixation and algae reproduction by microalgae Chlorella ellipsoidea (Chlorella ellipsoidea를 이용한 $CO_2$ 고정 및 미세조류 증식효과 검토)

  • 강창민;홍순강
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 2000
  • The purpose of this study was conducted to indentified the fixing quality of $CO_2$, the most important greenhouse effect gas, by microalgae Chlorella ellipsoidea in batch test apparatus. The glass flask of $1.4{\ell}$ culture media which was saturated with 99.99% pure $CO_2$ gas was setted water bath of $25^{\circ}C$, 5000Lux, and seeded 100$m\ell$ algae liquid. We checked the change of inorganic carbon concentration and algae population with time in culture media. The result were next: the growth of algae population relied on aquatic IC(inorganic carbon) concentration. And the pH was increased with decrease of IC concentration. The growth of algae population had positive correalation with $CO_2$ concentration, and the coefficient of correlation was 0.982. The specific growth rate($\mu$) of Chlorella ellipsoidea was 1.104/d, the maximum specific growth $rate({\mu}_{max}$) of 9.21/d, and helf velocity constant($K_s$) of $259mg/{\ell}$ by Monod equation.

  • PDF

Alcohol Fermentation by Zymomonas mobilis Part. 1. Effects of environmental conditions on the growth kinetics of Zymomonas mobilis (Zymomonas mobilis에 의한 알코올 발효 I. 발효 환경이 생육에 미치는 영향)

  • Pack, MooYoung;Chun, Byong-ik
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.33-38
    • /
    • 1983
  • The effect of various environmental conditions on the growth kinetics of Zymomonas mobilis were studied and the kinetic parameters were evaluated. The value of ${\mu}m$ was $0.45hr^{-1}$ and Ks was 0.23 g/L. Inhibition of growth at high glucose concentration was found to follow the threshold substrate inhibition. Threshold substrate concentration was 102 g/L and substrate inhibition constant was 196 g/L. The effects of yeast extract concentrations were found to follow the Monod equation. ${\mu}m$ value was $0.45hr^{-1}$ and Ks was 0.3 g/L at 20 g/L of glucose and $0.24hr^{-1}$ and 0.24 g/L respectively at 200 g/L of glucose. The optimum temperature was found to be $35^{\circ}C$ and the activation energy of growth was 7.7 Kcal/mole below $35^{\circ}C$ and -29 Kcal/mole above $35^{\circ}C$.

  • PDF

Nitrogen Removal from Wastewater by a Multi-stage Bio-reactor (다단 생물반응기에 의한 질소제거)

  • 최규철;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.91-103
    • /
    • 1998
  • Design data for COD and nitrogen removal from wastewater were collected from Pilot's Multi-stage Bio-reactor. Hyraulic conditions and pollutant loadings were varied in order to optimize the biological and operational parameters. Pilot's experimental results summarize as followings. 1. T-N removal efficiency in the organic volumetric loading 0.2 kgCOD/m$^{3}$·d was obtained as maxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.. 2. Nitrification reaction was shown as maxium in the SCOD$_{cr}$/NH$^{+}$-N ratio of 6.5 and in more ratio than this it was decreased. Denitrification rate was the maxium as 85% in more than 7.5 of SCOD$_{cr}$/NO$_{x}$-N ratio and in the ratio over this ratio it becomes constant. 3. By utilizing an applied new model of Stover-Kincannon from Monod's kinetic model, concentration of T-N in the effluent according to flow quanity in the influent was estimated as 8.74 and -67.5 respectively. The formula for estimating T-N concentration of effluent was obtained like this: N$_e$=N$_0$(1- $\frac{8.74}{(QN$_0$/A)-67.05}$)

  • PDF

STUDIES ON THE MATHEMATICAL KINETICS FOR THE REMOVABLE MOVING SCREEN MEDIA-ACTIVATED SLUDGE PROCESS (회전형 반고정망 활성슬럿지 공법의 수학적 해법에 관한 연구 1. 유기물 제거속도에 대하여)

  • HAN Ung-Jun;HAN Yeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 1979
  • It is preented the removable moving screen media-activated sludge (REMSMAS) process by using the biological fixed-film systems. The substrate removal kinetic difference between the aeration-only completed mixing activated sludge (CMAS) process and REMSMAS process were observed. The substrate removal kinetics were developed based on the attached and suspended microbial growths. The units of the aeration-only CMAS process were continously operated with the normal detention time of 4.5, 6, 9.5 and 12 flours studies after steady-state condition and the operating of the REMSMAS units conducted with the normal detention time of 6 and 12 hours studies in nonsteady-state condition. The feed solution was diluted 18 times to the raw starch wastewater in of order to maintain the proper COD (950mg/l) and BOD (450mg/l) concentration. Design parameters related to the suspended microbial growths were caculated by the equations used in the aeration-only CMAS model and these parameters used to evalute the kinetic constants in the REMSMAS process. The kinetic constant values of $Y_2,\;K_d,(\mu_{max})_s\;and\;K_s$ from Monod equations were respectively 0.78, 0.027/hr, 1.1/hr and 95mg/l in the aeration-only CMAS process. The value of the aera capacity (F) appeared to be $9.1\;mg/cm^2-day$ and the mean value of the saturation constant $(K_g)$ appeared to be 53.5 mg/l in the REMSMAs process. Also, the substrate removal .ate of the REMSMAS process was higher than that of the normal activated sludge process when this system was operated in steady-state condition. However, the rate was reduced as the critical operating day was approached.

  • PDF

Survival Strategy of Dominant Diatom Chaetoceros debilis and Leptocylindrus danicus as Southwestern parts of East Sea - The availability of Dissolved Organic Nitrogen under Dissolved Inorganic Nitrogen-limited Environments (동해 남서해역에서 우점 규조류 Chaetoceros debilis와 Leptocylindrus danicus의 생존전략 - 용존 무기 질소 제한 환경에서 용존 유기 질소의 이용가능성)

  • Yang, Han-Soeb;Jeon, Seul Gi;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.212-219
    • /
    • 2016
  • The bioavailability of dissolved organic nitrogen (DON) by dominant species Chaetoceros debilis and Leptocylindrus danicus under dissolved inorganic nitrogen (DIN)-limited condition in the southwestern East Sea was conducted to assess the quantitative evaluation using growth kinetic experiment. Nitrogen sources were nitrate and ammonium as DIN, glycine and urea, which is portion component of DON in East Sea. Maximum specific growth rate (${\mu}_{max}$) and half-saturation constant ($K_s$) of C. debilis calculated from Monod equations were estimated to be $1.50day^{-1}$ and $1.62{\mu}M$ in nitrate, $1.13day^{-1}$ and $6.97{\mu}M$ in ammonium, $1.46day^{-1}$ and $3.36{\mu}M$ in glycine, $0.93day^{-1}$ and $0.55{\mu}M$ in urea, respectively. Also, L. danics was estimated to be $1.55day^{-1}$ and $5.21{\mu}M$ in nitrate, $1.57day^{-1}$ and $4.57{\mu}M$ in ammonium, $1.47day^{-1}$ and $3.80{\mu}M$ in glycine, $1.42day^{-1}$ and $1.94{\mu}M$ in urea, respectively. Both C. debilis and L. dancius have higher affinity of urea than DIN. The high affinity of urea was indicated that the dominant species were able to growth using urea under DIN-limited conditions. Thus, DON utilization of phytoplankton may be one of the important dominant strategy under DIN-limited environments such as southwestern East Sea.

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system (모델 상수관망에 형성된 초기 생물막에서 분리한 종속영양세균의 생장 동역학 및 염소 내성)

  • Park, Se-Keun;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.