• 제목/요약/키워드: Monod

검색결과 64건 처리시간 0.02초

생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발 (Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier)

  • 왕수균;오재일;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권4호
    • /
    • pp.12-20
    • /
    • 2003
  • 본 연구에서는 원위치 생물학적 처리 과정에서 공대사 기작에 의해 분해되는 유기오염물질의 성상과 거동을 모의하기 위한 수학적 모델을 제기하였다. 토양구조 내에서 부동유역의 존재가 처리 과정에 미치는 영향을 고려하기 위하여 이중공극 개념을 적용하였으며, 유기오염물질의 거동과 생물학적 처리에 미치는 미생물의 영향을 수학적으로 표현하기 위하여 수정된 Monod식과 토양상 미생물의 미소군집모형이 적용되었다. 가상의 원위치 생물학적 처리 과정에 대한 모델의 적용을 통하여 공극내 생체축적으로 인한 투수능의 감소가 지하수 흐름에 미치는 영향이 예시되었다. 가상의 생물학적 처리 과정에 대한 모델의 모의결과는 부동유역의 존재가 유기오염물질의 생물학적 가용성을 저감시키며, 생물벽체의 형성 및 처리과정에 있어 외부로부터의 미생물 및 영양물질 주입정의 위치가 효과적인 처리 계획의 수립을 위해 중요하다는 것을 보여 주었다.

농촌지역의 질산성질소 거동 해석을 위한 모델 개발 및 현장 적용 (Model Development for Analysis of Nitrate Leaching and Its Field Application in a Rural Area)

  • 석희준;전철민
    • 자원환경지질
    • /
    • 제42권6호
    • /
    • pp.561-574
    • /
    • 2009
  • 본 연구에서는 농업지역에서의 양수, 관개, 탈질작용을 고려한 불포화대 및 포화대 지하수 흐름 및 용질이동 모델인 VSFRT2D(Variably Saturated Flow and Reactive Transport model)를 개발하였다. VSFRT2D는 Richards equation을 지하수 흐름 지배방정식으로 이용하며, Thornthwaite 방법을 이용하여 강수가 일어나지 않을 때 지표면 증발산량 계산 절차를 포함하는 새로운 모델을 개발함으로써 기존의 불포화대 모델을 개선하였다. 또한 Monod kinetics에 기반한 생분해 기작을 네 개의 비선형 오염물 거동식과 세 종류의 미생물 거동식을 이용함으로서 탈질작용을 이 모델에 반영하였다. 개발된 모델을 질산성질소로 오염된 홍성 지역의 현장 관측 자료에 적용하였다. 본 연구에서는 강수, 양수, 증발산, 관개, 비료 투여 및 다양한 생분해 과정들이 지하수 흐름 및 오염물 거동에 미치는 효과들을 확인하기 위하여 각각의 과정을 개별적으로 나누어서 수치 모의한 후 각각의 결과를 상호 비교하였다. 수치 모의 결과 이 지역에서의 질산성 질소 농도 변화는 생분해에 의한 영향은 매우 미미하게 나타났다. 반면에 관개에 의한 양수, 강수, 질소 비료 시비에 의해서는 크게 영향을 받았다.

Batch and Continuous Culture Kinetics for Production of Carotenoids by ${\beta}$-Ionone-Resistant Mutant of Xanthophyllomyces dendrorhous

  • Park, Ki-Moon;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1221-1225
    • /
    • 2007
  • A ${\beta}$-ionone-resistant mutant strain isolated from the red yeast Xanthophyllomyces dendrorhous KCTC 7704 was used for batch and continuous fermentation kinetic studies with glucose media in a 2.5-1 jar fermentor at $22^{\circ}C$ and pH 4.5. The kinetic pattern of growth and carotenoid concentration in the batch fermentations exhibited a so-called mixed-growth-associated product formation, possibly due to the fact that the content of intracellular carotenoids depends on the degree of physical maturation toward adulthood. To determine the maximum specific growth rate constant (${\mu}_m$) and Monod constant ($K_s$) for the mutant, glucose-limited continuous culture studies were performed at different dilution rates within a range of $0.02-0.10\;h^{-1}$. A reciprocal plot of the steady-state data (viz., reciprocal of glucose concentration versus residence time) obtained from continuous culture experiments was used to estimate a ${\mu}_m$ of $0.15\;h^{-1}$ and $k_s$ of 1.19 g/l. The carotenoid content related to the residence time appeared to assume a typical form of saturation kinetics. The maximum carotenoid content ($X_m$) for the mutant was estimated to be $1.04\;{\mu}g/mg$ dry cell weight, and the Lee constant ($k_m$), which was tentatively defined in this work, was found to be 3.0 h.

Cyclosporin A 고정상 발효에서 효율인자의 계산을 통한 고정화 담체의 최적크기 결정 (Determination of Optimum Bead Size by Calculating Effectiveness Factors in Cyclosporin A Fermentation by Immobilized Cells)

  • 전계택;이태호장용근
    • KSBB Journal
    • /
    • 제11권1호
    • /
    • pp.30-36
    • /
    • 1996
  • Cyclosporin A 고정화배양과 현탁배양의 결과를 바탕으로 각각의 배양의 경우에 따른 비성장속도의 포도당에 대한 Monod 속도식을 제안하고 그에 필요 한 매개변수들을 구하였다. 고정화 배양이 현탁배양 에 비해 높은 ${\mu}m$와 낮은 Km 값을 갖는 것으로 나 타났는데 이는 고정화 균체의 우수한 활성과 기질에 대한 높은 친화도에 기 인한 것으로 보인다. 고정상 발효의 경우, 구한 매개변수들을 담체내에서의 물질 전달 및 반응속도의 정도를 나타내는 효율인자 값을 계산하는데 이용하였다. 중요한 고정화 공정변수인 담체크기, 균체부하의 정도가 기질의 확산저항에 미 치는 영향을 고려하여 효율인자값을 계산한 결과, 적절한 담체의 크기는 반경 $100 ~ 500{\mu}m$로 나타났 다. 고정화세포배양시 담체내의 균체의 균일한 분포 및 활성도의 유지를 위해서, 적정한 담체입자크기를 결정한 후 균체부하량을 조절하여 고정화 공정을 운 영하는 것이 중요한 것요로 판명되었다.

  • PDF

전극을 전자공여체로 이용한 생물전기화학공정에서의 염소화페놀의 탈염소화 (Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor)

  • 전현희;박대원
    • KSBB Journal
    • /
    • 제22권3호
    • /
    • pp.134-138
    • /
    • 2007
  • 미생물이 환원된 전극을 전자공여체로 이용하고, 염소화페놀을 전자수용체로 이용하는 새로운 혐기성 호흡의 생물전기화학공정을 통해 2,6-DCP을 탈염소시킬 수 있는지를 조사하였다. 이를 위해 전류의 유무에 따른 농도변이와 전극 표면을 주사전자현미경으로 관찰한 결과, 전류가 흐르는 경우에만 염소화페놀이 완전히 제거됨을 보였으며, 전극표면에 생물막이 형성된 것을 통해서 전극이 전자공여체 역할을 함으로서 탈염소시킬 수 있음을 증명하였다. 또한, 본 연구의 생물전기화학공정을 통해서 고농도의 염소화페놀 적용도 가능한지를 조사하고 Monod식을 이용하여 최대 탈염소화 속도를 산정하였는데 본 실험의 최대초기농도인 $457mg/{\ell}$까지 분해가 가능하였으며, 최대탈염소화 속도는 $5.95mg/{\ell}$-h($cm^2$ (electrode surface area))이었다.

환경 친화적 한우 거세우 사양을 위한 도체특성 성분 간 비율과 육량지수 간 관계 분석 (Analysis of Relation between Carcass Trait Components and Yield Index for Environment Friend Hanwoo Steer Breeding)

  • 조상범
    • 한국유기농업학회지
    • /
    • 제27권2호
    • /
    • pp.225-235
    • /
    • 2019
  • The present study hypothesized that ratio between carcass traits components could be applied for the understanding of yield index in Hanwoo steer. A thousand data was generated based on average carcass weight (CW), loin area (LA) and backfat thickness (BT) of Hanwoo steer in December 2018 for analysis 1. Then yield index (YI) was calculated using newly established yield index equation. The correlation between yield index and each carcass traits was visualized. In the interaction between carcass traits components (LA, CW, BT) and YI, only the interactions including BT showed a regular pattern to YI. Then changes of YI according to ratio of carcass traits components were investigated. The observed interactions between LABT and CWBT were similar with Monod equation model. The changes of YI to LABT and CWBT were fitted to Monod equation, and yield constants (K1 for LABT; K2, CWBT) of each equation were calculated as 0.47 and 2.20, respectively. Carcass traits from 5 commercial Hanwoo steer farm were then employed in the second analysis. Yield constants of each farm were estimated. In estimation, R2 value for K1 (LABT) showed greater than the K2 (CWBT). Finally, each farm was plotted based on their K1 and K2 values and it was found that greater yield index of Hanwoo steer was found as increased K1 and K2. As conclusion, the present study suggested the possibility of K1 and K2 values for understanding of yield grade equation and their application in the evaluation of new model for yield grade estimation and feeding strategy.

Improved Production of Live Cells of Lactobacillus rhamnosus by Continuous Cultivation using Glucose-yeast Extract Medium

  • Ling Liew Siew;Mohamad Rosfarizan;Rahim Raha Abdul;Wan Ho Yin;Ariff Arbakariya Bin
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.439-446
    • /
    • 2006
  • In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates $(0.05 h^{-1}\;to\;0.40h^{-1})$ using a 2L stirred tank fermenter with a working volume of 600ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, ${\mu}_{max}$, was estimated at $0.40h^{-1}$I, and the Monod cell growth saturation constant, Ks, at approximately 0.25g/L. Maximum cell viability $(1.3{\times}10^{10}CFU/ml)$ was achieved in the dilution rate range of $D=0.28h^{-1}\;to\;0.35h^{-1}$. Both maximum viable cell yield and productivity were achieved at $D=0.35h^{-1}$. The continuous cultivation of L. rhamnosus at $D=0.35h^{-1}$ resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.

에탄올 생산 균주 Saccharomyces cerevisiae ATCC 248858의 비성장속도에 관한 수학적 모형연구 (Investigated of Mathematical Model for the Specific Growth Rate of Ethanol Producing Microorganism, Saccharomyces cerevisiae ATCC 24858)

  • 김휘동;허병기
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.730-734
    • /
    • 1998
  • An이ew식과 Aiba삭을 조합하여 에탄올 생산단주인 Saccharomyces cerevisiae ATCC 24858의 비성장속도를 당농도와 에탄올 농도의 함수로 표현하였다. 기침의 저해영향을 받지 않는 최대 당농도 $S_m$은 150 g/L이며 기질의 저해영향은 기질농도 S와 $S-S_{max}$항의 함수로 표현되었다. 최대 비성장 속도 ${\mu}max 는 0.49 hr^{-1}, Monod상수 K_s$는 19 g/L, Andrew식의 기질저해상수 $K_1$는 139 g/L이였다. 또한 비성장속도에 영향을 마치지 앓는 최대알콜농도 Pm이 존재하였으며 그 값은 2 g/L 이였다. 따라서 Aiba식에서 비성장속도에 영향을 미치는 에탄올 농도항은 P-Pm으보 표현되었다. 본 연구의 알코올생산균주에 대한 비성장속도의 완성된 수식은 디음과 같으며 이 수식에 위한 계산값은 평균오차 6% 내외의 범위에서 실험값과 일치하였다.

  • PDF

제약 폐수의 생물학적 동력학 계수 측정 (Determination of Biological kinetic Parameters for Pharmaceutical Wastewater)

  • 이영락;최광근;이진원
    • KSBB Journal
    • /
    • 제21권1호
    • /
    • pp.49-53
    • /
    • 2006
  • 본 연구는 다양한 유기물과 난분해성 물질들이 포함되어 있는 제약 폐수 내 미생물의 생화학적 특성을 이해하고자 생물학적 동력학 계수를 측정 하고자하였다. 생물학적 동력학 계수는 최대 비성장율과 수율계수, 그리고 반속도상수를 측정하였는데, 각각 10.49/day (0.437/hr), 0.655 그리고 38.89 mg/L로 나타났다. Monod 식의 비선형회귀분석으로 구한 ${\mu}_{max}$ 값 또한 10.63/day (0.443/hr)로 측정되어 두가지 경우에서 구한 값이 유사함을 알 수 있었다. 이러한 생물학적 동력학 계수를 제약 폐수 처리의 활성슬러지 공정의 산소요구량 및 용존 산소 농도 연구와 병행한다면 제약 폐수의 처리 효율 증진 효과를 기대할 수 있을 것으로 판단된다.

영지의 액체배양에 미치는 통기.교반의 효과와 동력학적 특성 (Effects and Batch Kinetics of Agitation and Aeration on Submerged Cultivation of Ganoderma Iucidum)

  • 이학수;정재현;이신영
    • KSBB Journal
    • /
    • 제16권3호
    • /
    • pp.307-313
    • /
    • 2001
  • The effects of agitaion and aeration on mycelial growth, exo-polysaccharide (EPS) production, and substrate consumption upon the submerged cultivation of G. lucidum were investigated, and the batch kinetics of the EPS fermentation of G. lucidum were interpreted as function of agitation speed and aeration rate. In a 2.6 L jar fermenter system, the optimum agitation speed and aeration rate for EPS production were determined to be 400 rpm and 1.0 vvm, respectively. The maximum production of EPS obtained was 15 g/L. The logistic model for mycelial growth fitted the experimental data better than that determined by the Monod and the two-thirds power models. The Luedeking-Piret equation adequately modelled the kinetic data obtained for product and substrate.

  • PDF