• Title/Summary/Keyword: Monod

Search Result 64, Processing Time 0.024 seconds

Kinetic Studies of Lactic Acid Fermentation(Part 4) -Kinetic Stuies on Continuous Cultivation- (유산균발효에 관한 동력학적연구(제4보) -연속배양에 있어서의 동력학적연구-)

  • LEE Keun-Tai;YANG Hyeun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.179-184
    • /
    • 1982
  • The behavior of continuous flow culture of Lartobacillus bulgricus was investigated by application of Monod's kinetic model. The parameters obtained from Monod's chemostat theory successfully predicted the behavior of the chemostat. Then, it was found that Monod's kinetics were applicable to the growth rate dependence on glucose concentration. Under steady-state condition, the maximum growth rate, saturation constant, and wash out were found to be 0.62/hr, 7.69 g/1, 0.51/hr of continuous culture. And the optimum condition for the highest cell production was 0.41/hr in dilution rate, and at that point the cell production rate was 0.178g/1 hr.

  • PDF

Biodegradation Kinetics of Nonylphenol Ethoxylates by Pseudomonas sp. (Pseudomonas sp.에 의한 Nonylphenol Ethoxylates의 Kinetics)

  • 김수정;이종근;이상준
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.271-278
    • /
    • 1993
  • Optimal biodegradation kinetics models to the initial nonylphenol ethoxylates-30 concentration were investigated and had been fitted by the linear regression. Microorganisms capable of degrading nonylphenol ethoxylates-30 were isolated from sewage near Ulsan plant area by enrichment culture technique. Among them, the strain designated as EL-10K had the highest biodegradability and was identified as Pseudomonas from results of taxonomical studies. The optimal conditions for the biodegradation were 1.0 g/ι of nonylphenol ethoxylates-30 and 0.02 g/ι of ammonium nitrate at pH 7.0 and 3$0^{\circ}C$. The highest degradation rate of nonylphenol ethoxylates-30 was about 89% for 30 hours incubation on the optimal condition. Biodegradation data were fit by linear regression to equations for 3 kinetic models. The kinetics of biodegradation of nonylphenol ethoxylates was best described by first order model for 0.1 $\mu\textrm{g}$/ι nonylphenol ethoxylates-30 ; by Monod no growth model and Monod with growth model for 0.5 $\mu\textrm{g}$/mι and 1.0, 5.0 $\mu\textrm{g}$/mι, respectively.

  • PDF

Differential Evolution Algorithm Using Ecological Model (생태학적 모델을 이용한 차동 진화 알고리즘)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.283-284
    • /
    • 2021
  • 본 논문에서는 서로 다른 진화 전략의 병렬화를 구현하기 위해 섬 모델을 도입하고 자원 간의 균형을 유지하기 위해 Monod 모델을 활용하는 PDE-EM이라는 생태 모델 알고리즘을 기반으로 한 새로운 병렬 DE를 제안하도록 한다. 각 섬은 동일한 자원으로 서로 다른 전략으로 진화한다. 지정된 세대 수마다 섬의 진화 정도에 따라 등급이 매겨지고, Monod 모델을 활용하여 각 섬에 다양한 자원이 할당된다.

  • PDF

Ecological Based Hybrid Differential Evolution (생태 기반 하이브리드 차등 진화)

  • Shin, Seong-Yoon;Cho, Gwang-Hyun;Cho, Seung-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.416-417
    • /
    • 2022
  • In this paper, we propose a hybrid DE based on an ecological model algorithm called SparkHDE-EM. This model implements the parallelization of various DE variants by introducing an island model based on Spark, and utilizes the Monod model to maintain a balance between resources.

  • PDF

Experimental detemination of Half-Saturation Coefficient for Nitrifying Bacteria by Infinite Dilution Method (무한희석법(無限稀釋法)을 이용한 질산화(窒酸化) 미생물(微生物) 반포화계수(半飽和係數) 결정(決定)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Byong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 1998
  • To remove nitrogen from wastewater, ammonia nitrogen has to be oxidized to nitrate nitrogen before denitrification reaction which converts nitrate nitrogen to nitrogen gas. In order to understand nitrification, several mathematical models had been proposed and Monod type model has been accepted internationally. Since Monod type model consists of maximum substrate utilization rate, substrate concentration and half-saturation coefficient, these values have to be addressed before using Monod type model. Several experimental procedures to determine half-saturation coefficient have been developed, however, Infinite dilution method was known to be time saving procedure. In this study, the mathematical equations and experimantal procedures for Infinite dilution method are presented and this method is used to determine half-Saturation coefficient for nitrifying bacteria. As results, Infinite dilution method is proved that this coefficient can be determined within 8 hours and the values of half-saturation coefficient has a range of 0.728 and $0.455gNH_4{^+}-N/m^3$ and the average has $0.580gNH_4{^+}-N/m^3$ through 5 sets of experiments.

  • PDF

Kinetics and Modelling of Cell Growth and Substrate Uptake in Centella asiatica Cell Culture

  • Omar, Rozita;Abdullah, M.A.;Hasan, M.A.;Rosfarizan, M.;Marziah, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • In this study, we have conducted kinetics and modelling studies of Centella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.

Kinetics of nitrification and acrylamide biodegradation by Enterobacter aerogenes and mixed culture bacteria in sequencing batch reactor wastewater treatment systems

  • Madmanang, Romsan;Jangkorn, Siriprapha;Charoenpanich, Jittima;Sriwiriyarat, Tongchai
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.309-317
    • /
    • 2019
  • This study evaluated the kinetics of acrylamide (AM) biodegradation by mixed culture bacteria and Enterobacter aerogenes (E. aerogenes) in sequencing batch reactor (SBR) systems with AQUASIM and linear regression. The zero-order, first-order, and Monod kinetic models were used to evaluate the kinetic parameters of both autotrophic and heterotrophic nitrifications and both AM and chemical oxygen demand (COD) removals at different AM concentrations of 100, 200, 300, and 400 mg AM/L. The results revealed that both autotrophic and heterotrophic nitrifications and both AM and COD removals followed the Monod kinetics. High AM loadings resulted in the transformation of Monod kinetics to the first-order reaction for AM and COD removals as the results of the compositions of mixed substrates and the inhibition of the free ammonia nitrogen (FAN). The kinetic parameters indicated that E. aerogenes degraded AM and COD at higher rates than mixed culture bacteria. The FAN from the AM biodegradation increased both heterotrophic and autotrophic nitrification rates at the AM concentrations of 100-300 mg AM/L. At higher AM concentrations, the FAN accumulated in the SBR system inhibited the autotrophic nitrification of mixed culture bacteria. The accumulation of intracellular polyphosphate caused the heterotrophic nitrification of E. aerogenes to follow the first-order approximation.

Effect of Chlorides on Nitrification Process in a Tidal Section of the River (하천 감조역에서의 질소변환에 있어서 염분의 영향)

  • 김원규
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.227-233
    • /
    • 1993
  • Laboratory batch experiments were conducted, using suspended solids and sediments taken. from a tidal section of the Rokkaku river, to study the effect of salinity on nitrification and to estimate kinetic parameters of it. Experimental results indicated much more inhibitation of ;$NO_2$-N oxidation by chlorides than that of $NH_4$-N oxidtion. Nitrifying bactema in sediments were less sensitive to chlorides than those in SS. The change of nitrogen concentration with time was clearly explained with the Monod growth model and the kinetic parameters were obtained by the curve fitting method.

  • PDF

Biodegradation Kinetics of Benzene by Pseudomonas aeruginosa

  • 박춘하;김동주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.235-238
    • /
    • 2001
  • Monod kinetics에 관련된 주요 생분해 파라미터를 도출하기 위하여 microcosm 규모의 배치실험에서 BTEX 화합물에 대해 분해능이 우수한 Pseudomonas aeruginosa을 이용해 다양한 농도의 벤젠에 대한 분해기작을 고찰하였다. 벤젠의 생분해율(D)과 Maximumspecific growth rate ($\mu$$_{max}$)는 기질의 농도가 증가할수록 높아지다가 최고점에 도달 후에 점차적으로 감소하였으며 이것은 어느 한계점 이상의 벤젠 농도가 미생물의 생분해에 방해 요소로 작용한다는 것을 나타낸다. 그러나 미생물에 의한 벤젠 분해의 상관관계를 나타내는 yield coefficient(Y)는 벤젠의 초기 농도가 낮을수록 높은 값을 나타내었다. Microbial decay constant( b)와 half-saturation constant(K$_{c}$)는 각각 0.21~0.48day$^{-1}$와 218mg/$\ell$로서 문헌값 보다 높은 수치를 나타내었다. 실험으로부터 결정된 생분해 파라미터들은 초기 벤젠 농도에 따라 큰 차이를 보이므로 생분해 모델링에 사용할 파라미터는 기질농도에 따라 적절하게 선택되어야 한다고 사료된다.

  • PDF

Optimal Cultur Conditions for the Production of Insecticidal Toxin by Xenorhabdus nematophilus Isolated from Steinernema carpocapsae (Steinernema carpocapsae로부터 분리된 Xenorhabdus nematophilus에 의한 살충물질 생산을 위한 최적 배양조건)

  • 유연수;박선호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.100-105
    • /
    • 2000
  • Optimal medium composition, culture conditions, characteristics of phase variation and activity of insecticidal toxin by Xenorhabdus nematophilus isolated and identified from Korean entomopathogenic nematode Steinernema carpocapsae were examined. Optimal medium composition of this strain was 50-70 g/L yeast extract, 3 g/L $K_{2}HPO_{4}$, 1g/L $NH_{4}H_{2}PO_{4}$, 2g/L ${MgSO}_4$$\cdot$${7H}_{2}O$, 10g/L NaCl and, these, yeast extract was found as a limiting nutrient for cell growth. When Monod equation was applied, maxmum specific growth rate and Monod constant were estimated as 0.13 $hr^{-1}$ and 20g/L, respectively. The pH of culture medium increased up to 8.5-9.5 regardless of initial pH 6-7 as the cells continued to grow. The specific growth rate in a 7 L fermentor was 0.18 $hr^{-1}$, which was enhancement 1.4 fold compared to a flask culture. In case of phase variation, phase I fraction was maintained above 90% at the stationary phase for both flask and fermentor cultures. According to oral toxicity test of Gallena mellonella by Xenorhabdus nematophilus, the addition of cell pellets into feed inhibited normal growth of insect larvae and killed completely then after 20 days cultivation. When culture supernatant of this strain was injected into hemolymph of insect larva, the toxicity was strongest at 24hr cultivation in the early exponential phase and gradually decreased as the culture time proceeded.

  • PDF