• Title/Summary/Keyword: Mono-poly

Search Result 86, Processing Time 0.035 seconds

THE EFFECTS OF MONO-POLY ON THE SOFT DENTURE LINERS (의치상용 연성 이장재에 대한 mono-poly의 효과)

  • Heo, Ji-Hyun;Jin, Tai-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.484-491
    • /
    • 2000
  • Soft denture liners or conditioners may be valuable therapeutic materials. The life of these liners is short and varies, but it can be extended by the use of a mono-poly(polymethyl methacrylate coating material). This study determined whether coating three temporary soft denture liners with mono-poly affected the resiliency of soft liners, and evaluated the ability of mono-poly to prevent water absorption and alcohol loss from the underlying soft liners. $20{\times}12mm$ cylindrical specimens of Coe-Soft, Soft-Liner, Coe-Comfort soft lining materials were made and divided into two groups of mono-poly uncoated(control) and mono-poly coated specimens. Specimens were immersed in water and compressed on an instron universal testing machine and weighed at initial, 24 hours, 1 week, 2 weeks, and 4 weeks. Resiliency was determined by measuring the energy absorbed by the soft liners when stressed to a specific yield point. Mono-poly coating significantly increased the resiliency of the Soft-Liner, but had no effect on the other soft liners. Among the 3 soft liners, Soft-Liner showed the hightest resiliency and modulus of elasticity. The weight loss in Soft-Liner was the least among the 3 liners, and the weight loss in Coe-Soft was decreased by monopoly coating.

  • PDF

Effect of Poly(vinyl alcohol) and Poly(vinyl alcohol) Mono Thiol on the Stability Properties of Poly(vinyl acetate) Latex (폴리비닐알코올과 폴리비닐알코올모노티올이 폴리초산비닐 라텍스의 안정성에 미치는 영향)

  • 이서용;박이순
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.579-588
    • /
    • 2000
  • The effects of protective colloids on the colloid stability of poly(vinyl acetate) (PVAc) latex was investigated. The stability of PVAc latex in reactive poly(vinyl alcohol) mono thiol (PVALT) (DP=1080) having 78.4% saponification value was better than poly (vinyl alcohol)(PVA) (DP=1100) having 81.6% saponification value. The colloidal stability of PVAc latex particles improved drastically with increase of the reactive PVALT. The particle surface morphology of PVAc latex was examined by transmission electron microscopy (TEM). It was shown that particle size of 1ha latexes decreased with increasing reactive PVALT concentration. Therefore, the stabilities of latex for reactive PVALT protective colloid was superior to that of PVA ones. This result is due to the introduction of many thiol groups that induce chemical bonds at PVAc latexes surface, so that the formation of PVALT-b-PVAc block copolymer via the reaction of PVAc with reactive PVALT. In addition, zeta potential of the PVAc latexes decreased with increasing sodium carbonate concentration.

  • PDF

Study on Decomposition Reactions of Poly(ethylene terephthalate) Films Treated with Mono-sodium Ethylene Glycolate (Mono-sodium ethylene glycolate에 의한 Poly(ethylene terephthalate) Film의 분해반응에 관한 연구)

  • Cho, Hwan;Huh, Man-Woo;Cho, In-Sul;Cho, Kyu-Min;Yoon, Hung-Soo
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly(ethylene Terephthalate) (PET)fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. When PET films were decomposed in MSEG-EG solution, decomposition rate constant showed an exponential relationship with treating temperature; activition energy was 23.30 Kcal/mol, activation enthalpy was 22.52~22.60 Kcal/mol and activation entropy was -29.20~ -29.41 e.u. On the basis of the results obtained above and structure identification of decomposition products, it was found that the decomposition reaction proceeded through ester interchange reaction.

  • PDF

Impact of Screw Type on Kyphotic Deformity Correction after Spine Fracture Fixation: Cannulated versus Solid Pedicle Screw

  • Arbash, Mahmood Ali;Parambathkandi, Ashik Mohsin;Baco, Abdul Moeen;Alhammoud, Abduljabbar
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1053-1059
    • /
    • 2018
  • Study Design: Retrospective review. Purpose: To detect the effect of cannulated (poly-axial head) and solid (mono-axial head) screws on the local kyphotic angle, vertebral body height, and superior and inferior angles between the screw and the rod in the surgical management of thoracolumbar fractures. Overview of Literature: Biomechanics studies showed that the ultimate load, yield strength, and cycles to failure were significantly lower with cannulated (poly-axial head) pedicle comparing to solid core (mono-axial head). Methods: The medical charts of patients with thoracolumbar fractures who underwent pedicle screw fixation with cannulated or solid pedicle screws were retrospectively reviewed; the subjects were followed up from January 2011 to December 2015. Results: Total 178 patients (average age, $36.1{\pm}12.4years$; men, 142 [84.3%]; women, 28 [15.7%]) with thoracolumbar fractures who underwent surgery and were followed up at Hamad Medical Corporation were classified, based on the screw type as those with cannulated screws and those with solid screws. The most commonly affected level was L1, followed by L2 and D12. Surgical correction of the local kyphotic angle was significantly different in the groups; however, there was no significant difference in the loss of correction of the local kyphotic angle of the groups. Surgical correction of the reduction in the vertebral body height showed statistical significance, while the average loss of correction in the reduction of the vertebral body height was not significantly different. The measurement of the angles made by the screws on the rods was not significantly different between the cannulated (poly-axial head) and solid (mono-axial head) screw groups. Conclusions: Solid screws were superior in terms of providing increased correction of the kyphotic angle and height of the fractured vertebra than the cannulated screws; however, no difference was noted between the screws in the maintenance of the superior and inferior angles of the screw with the rod.

Study on Properties of Poly (ethylene terephthalate) Films Treated with Mono-sodium ethylene glycolate (Mono-sodium ethylene glycolate 처리에 의한 Poly(ethylene terephthalate) Film의 물성에 관한 연구)

  • Cho, Hwan;Heo, Man-Woo;Cho, In-Sool;Lee, Kwang-Woo;Cho, Kyu-Min
    • Textile Coloration and Finishing
    • /
    • v.2 no.4
    • /
    • pp.223-230
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly (ethylene terephthalate) (PET) fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. 1. The tensile strength decreased with increasing decomposition ratio while density, crystallinity and crystallite size increased with increasing decomposition ratio when PET films were treated with MSEG-EG solution. 2. Number of carboxyl end groups was increased until 10-20% decomposition ratio when PET films were treated with MSEG-EG solution. However, the decomposition ratio became more than 20%, the number of carboxyl end groups had tendency to decreased. 3. The surface tension of PET films increased for treating with MSEC-EG solution. Hydrogen bonding force and poler force among the components of surface tension increased while dispersion force among those decreased. 4. The moisture region of PET films increased with increasing decomposition ratio when PET films were treated with MSEG-EG solution.

  • PDF

Preimplantation Developmental Ability of Pig Embryos according to Embryonic Compaction Patterns (돼지수정란의 Compaction 양상에 따른 착상전 배발달 양상)

  • Koo, Deog-Bon;Min, Sung-Hun;Park, Hum-Dai
    • Journal of Embryo Transfer
    • /
    • v.25 no.3
    • /
    • pp.179-187
    • /
    • 2010
  • Embryonic compaction is essential for normal preimplantation development in mammals. The present study was to investigate the effects of compaction patterns on developmental competence of pig embryos. The proportion of blastocyst formation derived from compacted morula was higher than those of compacting and pre-compacting morula (P<0.01). Nuclei numbers of inner cell mass (ICM), trophectoderm (TE), and total of blastocysts derived from compacted group were also superior to those of compacting and pre-compacting groups (P<0.05). Then, compaction patterns, developmental ability and structural integrity were compared between mono- and poly-spermic embryos. The rate of compacted morula in mono-spermic embryos was higher than that of poly-spermic embryos (P<0.05). Especially, the rate of blastocyst formation derived from compacted embryos in mono-spermic embryo group was higher than that of poly-spermic embryo group (P<0.05), although no difference was detected between the two groups in the structural integrity. Finally, we confirmed that beta-catenin was differentially expressed according to compaction patterns in morula and blastocyst stage embryos. In conclusion, our results suggest that the compaction patterns during preimplantation development play a direct role in developmetal competence and quality of pig embryos.

A Study on the Precision Cutting Characteristics for Different Cutting Edge Radii in Ductile Material (절인반경차이에 따른 연질재료의 정밀가공 특성 연구)

  • 권용기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.75-80
    • /
    • 2000
  • This paper deals with the precision cutting characteristics of mono-crystal diamonds poly-crystal diamonds and tungsten carbide tool on ductile material. The cutting tests were carried out under various uncut chip areas and 20${\mu}{\textrm}{m}$ depth of engagement. The machinability in precision machining was discussed from the viewpoints of the normal cutting forces and the surface roughness of the workpiece. As the feed rate decreases the normal force difference for cutting edge radii appears to large. In various cutting edge radii the surface roughness difference when cut the copper which is ductile material than the aluminium alloy is large. As the same cutting condition the hardness value on cut surface with the diamond tool appears to be smaller than that of the tungsten carbide tool.

  • PDF

A Study on the Precision Cutting Characteristics by the Diamond Tool on the Cutting Distance (다이아몬드 공구의 절삭거리에 따른 정밀가공 특성 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.127-133
    • /
    • 1998
  • This research intends to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) and a poly-crystal diamond(PCD) tool on the cutting distance. In case of an MCD tool, as the cutting distance increases, the surface roughness becomes worse and the standard deviation of surface roughness is small. In case of a PCD tool, as the cutting distance increases, the surface roughness becomes stable with a large standard deviation. The cutting force ratio(Ft/Fn) decreases as the nose radius increases and the decreasing ratio becomes larger for small nose radius.

  • PDF

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF