• Title/Summary/Keyword: Monitoring techniques

Search Result 1,435, Processing Time 0.031 seconds

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

Noncontact techniques for monitoring of tunnel linings

  • White, Joshua;Hurlebaus, Stefan;Shokouhi, Parisa;Wittwer, Andreas;Wimsatt, Andrew
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.197-211
    • /
    • 2014
  • An investigation of tunnel linings is performed at two tunnels in the US using complimentary noncontact techniques: air-coupled ground penetrating radar (GPR), and a vehicle-mounted scanning system (SPACETEC) that combines laser, visual, and infrared thermography scanning methods. This paper shows that a combination of such techniques can maximize inspection coverage in a comprehensive and efficient manner. Since ground-truth is typically not available in public tunnel field evaluations, the noncontact techniques used are compared with two reliable in-depth contact nondestructive testing methods: ground-coupled GPR and ultrasonic tomography. The noncontact techniques are used to identify and locate the reinforcement mesh, structural steel ribs, internal layer interfaces, shallow delamination, and tile debonding. It is shown that this combination of methods can be used synergistically to provide tunnel owners with a comprehensive and efficient approach for monitoring tunnel lining conditions.

A Study on Filtering Techniques for Dynamic Analysis of Data Races in Multi-threaded Programs

  • Ha, Ok-Kyoon;Yoo, Hongseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, we introduce three monitoring filtering techniques which reduce the overheads of dynamic data race detection. It is well known that detecting data races dynamically in multi-threaded programs is quite hard and troublesome task, because the dynamic detection techniques need to monitor all execution of a multi-threaded program and to analyse every conflicting memory and thread operations in the program. Thus, the main drawback of the dynamic analysis for detecting data races is the heavy additional time and space overheads for running the program. For the practicality, we also empirically compare the efficiency of three monitoring filtering techniques. The results using OpenMP benchmarks show that the filtering techniques are practical for dynamic data race detection, since they reduce the average runtime overhead to under 10% of that of the pure detection.

Development of Corrosion Monitoring Techniques for Reinforcements and Prestressing Tendons (철근 및 PSC 강재 부식감지 기술개발)

  • 윤석구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1297-1302
    • /
    • 2000
  • A literature review has been carried out to investigate why bridges have collapsed without warning. The reasons behind the collapses have been categorized into short and long term risks. It is thought that permanent monitoring systems which assess structural adequacy are more appropriate to long term risks. From the knowledge of the Korean bridge stock, its current problems and its likely future problems, it was considered that generally the most useful application for a permanent monitoring system is to monitor where chloride-induced corrosion either of the reinforcement or prestressing tendons is possible. A number of permanent monitoring systems currently in use on existing bridges which include some aspect of corrosion detection have been reviewed. The reasons as to why they are being used, what is being measured, what techniques are being used, and if they are deemed successful has been investigated. Based on these findings, and experimental programme has been constructed to investigate the accuracy, reliability and usefulness of various suitable techniques which could be included in a permanent monitoring system.

Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data (머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링)

  • Park, Ji Hyun;Shin, Sung Woo;Kim, Soo Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Review of Coastal Environmental Measurement Techniques Using Video Monitoring (비디오 모니터링을 이용한 연안환경 관측기술에 대한 고찰)

  • 김태림;이광수;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Video monitoring techniques and their applications to beaches were reviewed. The recent development of video hardware and image process made it possible to measure shoreline changes, sandbar morphology, wave runup, swash motion, and so on using video camaras. Especially, quantitative information from the video image can be obtained by digitization of image, rectification procedure, and image process. Using video monitoring techniques, measurements can be made at much lower cost and for long periods of time compared to the traditional measurement techniques, although these techniques are of lower accuracy and provide only indirect information on the land and water surface.

  • PDF

Study on The Corrosion Rate Monitoring of Steel in Concrete Using Electric resistance Sensor and Electrochemical Methods. (전기저항형 센서 및 전기화학적 방법을 이용한 철근콘크리트 구조물의 부식속도 측정 방법에 관한 연구)

  • 조용범;김용철;장상엽;고영태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1185-1192
    • /
    • 2001
  • This paper reviews available techniques for monitoring corrosion of steel in concrete. The need for early detection and diagnosis of corrosion related deterioration in reinforced structures is widely acknowledged. This is particularly important in reinforced concrete structures on account of the economic and social significance of the problem. The current generally used on-site procedure for corrosion monitoring of reinforced structures employs a method of half-cell surface potential measurements. While the technique has provided a useful means of delineating areas of high or low corrosion risk, there are difficulties in its use and interpretation when assessing rates of deterioration. Electrochemical techniques are by far the most suitable for corrosion monitoring purpose and meet most of the requirements. The aim of this paper is to describe the electric resistance sensor(ER sensor) and electrochemical techniques employed to monitor and estimate corrosion rates of reinforcement. Early detection and diagnosis of corrosion hazards allows preventive measures to be taken, hence the typically expensive repair of severely deteriorated structures can be avoided.

  • PDF

COMPUTATIONAL INTELLIGENCE IN NUCLEAR ENGINEERING

  • UHRIG ROBERT E.;HINES J. WESLEY
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.127-138
    • /
    • 2005
  • Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations.

Development of Dynamic Frequency Monitoring Software for Wide-Area Protection Relaying Intelligence (광역 보호계전 지능화를 위한 동적 주파수 모니터링 S/W 개발)

  • Kim, Yoon-Sang;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • The social and economic level of damages might be highly increased in the case of wide-area black-outages, because of heavy dependence of electricity. Therefore, the development of a wide-area protection relay intelligence techniques is required to prevent massive power outages and minimize the impact strength at failure. The frequency monitoring and prediction for wide-area protection relaying intelligence has been considered as an important technology. In this paper, a network-based frequency monitoring system developed for wide-area protection relay intelligence is presented. In addition, conventional techniques for frequency estimation are compared, and a method for advanced frequency estimation and measurement to improve the precision is proposed. Finally, an integrated monitoring system called K-FNET(Korea-Frequency Monitoring Network) is implemented based on the GPS and various energy monitoring cases are studied.