• Title/Summary/Keyword: Monitoring concept

Search Result 582, Processing Time 0.024 seconds

Application of digital software as a medical devices in dental clinic (치과 임상에서 디지털기반 소프트웨어 의료기기의 적용)

  • Woo, Keoncheol;Baik, SaeYun;Kim, Seong Taek
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • By facing the era of the 4th industrial revolution, personalized medical services for patients are expanding with the development of information and communications technology. With these changes, digital medical devices have begun to be used to support diagnosis, patient monitoring, and decision-making of diseases, and recently software medical devices for the purpose of preventing, managing, or treating disorders or diseases have become popular. The aim of this article is to understand the current concept and status of Software as a Medical Device (SaMD), which are actively being carried out in the United States, and to find out what fields can be applied in the future. In addition, it intends to find out the Korean domestic policy trends related to smart healthcare and find out the application of digital software as a medical devices that can be used in dental clinic to keep pace with the upcoming changes in the medical field.

Monitoring for Constructed Revetments Using Biopolymer Mixed Soil (바이오폴리머 배합토를 이용한 호안 조성과 모니터링)

  • Kim, Myounghwan;Lee, Du Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • Biopolymer is a general concept for high molecular compounds produced by living organisms. Among them, the xanthan and β-glucan, which are organic polymer mixture produced by micro-organisms, are mainly used to increase the viscosity of a substance. And diluting in water and mixing with sand or clay can increase compressive strength and shear strength. In this study, mixed soil prepared by mixing soil with xanthan and beta-glucan based biopolymers specially developed for the purpose of increasing soil strength was applied to the river bank revetment, and changes during winter were measured using ground LiDAR. As a result of analyzing winter changes in major sections using three-dimensional point cloud data obtained through ground LiDAR, there were no changes to the extent that it was difficult to confirm with the naked eye in the two sections coated with biopolymer blended soil. However, soil loss due to Rill erosion was confirmed in the natural embankment section where biopolymer blended soil was not used.

An Enhancement of The Enterprise Security for Access Control based on Zero Trust (제로 트러스트 기반 접근제어를 위한 기업 보안 강화 연구)

  • Lee, Seon-A;Kim, Beomseok;Lee, Hyein;Park, Wonhyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.265-270
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the paradigm of finance is also changing. As remote work becomes more active due to cloud computing and coronavirus, the work environment changes and attack techniques are becoming intelligent and advanced, companies should accept new security models to further strengthen their current security systems. Zero trust security increases security by monitoring all networks and allowing strict authentication and minimal access rights for access requesters with the core concept of doubting and not trusting everything. In addition, the use of NAC and EDR for identification subjects and data to strengthen access control of the zero trust-based security system, and strict identity authentication through MFA will be explained. Therefore, this paper introduces a zero-trust security solution that strengthens existing security systems and presents the direction and validity to be introduced in the financial sector.

Development of Computer-based Remote Technologies and Course Control Systems for Autonomous Surface Ships

  • Melnyk, Oleksiy;Volianska, Yana;Onishchenko, Oleg;Onyshchenko, Svitlana;Kononova, Olha;Vasalatii, Nadiia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.183-188
    • /
    • 2022
  • Recently, more and more researches aimed at the development of automated and autonomous ships are appearing in the scientific environment. One of the main reason is the need to solve the problems of safe navigation and reducing accidents due to human factor, as well as the ever-increasing problem associated with the lack of qualified maritime personnel. Development of technologies based on application of artificial intelligence also plays important role, after all for realization of autonomous navigation concept and enhancement of ship automatic maneuvering processes, advancement of maneuvering functions and elaboration of specific algorithms on prevention of close quarter situations and dangerous approach of ships will be required. The purpose of this work is the review of preconditions of occurrence of the autonomous ship navigation conception, overview of introduction stages and prospects for ship remote control based on unmanned technologies, analysis of technical and intellectual decisions of autonomous surface ships, main research tendencies. The research revealed that the technology of autonomous ship navigation requires further development and improvement, especially in terms of the data transmission protocols upgrading, sensors of navigation information and automatic control systems modernization, which allows to perform monitoring of equipment with the aim of improving the functions of control over the autonomous surface ship operation.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

Enhancement of Enterprise Security System Using Zero Trust Security (제로 트러스트 보안을 활용한 기업보안시스템 강화 방안)

  • Lee, Seon-a;Kim, Beom Seok;Lee, Hye in;Park, Won hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.214-216
    • /
    • 2021
  • It proposes a plan to strengthen the limitations of existing corporate security systems based on Zero-Trust. With the advent of the era of the Fourth Industrial Revolution, the paradigm of security is also changing. As remote work becomes more active due to cloud computing and COVID-19, security issues arising from the changed IT environment are raised. At the same time, in the current situation where attack techniques are becoming intelligent and advanced, companies should further strengthen their current security systems by utilizing zero trust security. Zero-trust security increases security by monitoring all data communications based on the concept of doubting and trusting everything, and allowing strict authentication and minimal access to access requestors. Therefore, this paper introduces a zero trust security solution that strengthens the existing security system and presents the direction and validity that companies should introduce.

  • PDF

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Performance Evaluation of SDN Controllers: RYU and POX for WBAN-based Healthcare Applications

  • Lama Alfaify;Nujud Alnajem;Haya Alanzi;Rawan Almutiri;Areej Alotaibi;Nourah Alhazri;Awatif Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.219-230
    • /
    • 2023
  • Wireless Body Area Networks (WBANs) have made it easier for healthcare workers and patients to monitor patients' status continuously in real time. WBANs have complex and diverse network structures; thus, management and control can be challenging. Therefore, considering emerging Software-defined networks (SDN) with WBANs is a promising technology since SDN implements a new network management and design approach. The SDN concept is used in this study to create more adaptable and dynamic network architectures for WBANs. The study focuses on comparing the performance of two SDN controllers, POX and Ryu, using Mininet, an open-source simulation tool, to construct network topologies. The performance of the controllers is evaluated based on bandwidth, throughput, and round-trip time metrics for networks using an OpenFlow switch with sixteen nodes and a controller for each topology. The study finds that the choice of network controller can significantly impact network performance and suggests that monitoring network performance indicators is crucial for optimizing network performance. The project provides valuable insights into the performance of SDN-based WBANs using POX and Ryu controllers and highlights the importance of selecting the appropriate network controller for a given network architecture.

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima;Kainat Fareed Memon;Zahid Hussain Khand;Sana Gul;Manisha Kumari;Ghulam Mujtaba Sheikh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.155-164
    • /
    • 2023
  • Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.