• Title/Summary/Keyword: Monitoring and Analysis Systems

Search Result 1,194, Processing Time 0.029 seconds

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

Real-time Natural Disaster Failure Analysis Information System Development using GIS Environment (GIS환경의 실시간 자연재해정보를 연계한 재해고장분석시스템 개발)

  • Ahn, Yeon-S.
    • Journal of Digital Contents Society
    • /
    • v.10 no.4
    • /
    • pp.639-648
    • /
    • 2009
  • Earth's environment issues are introduced recently and every year the social loss have been occurred by the impact of various disaster. This kind of disaster and weather problems are the increasing reason of electricity transmission network equipment's failures because of exposing by the natural environment. The emergency and abnormal status of electricity equipment make the power outage of manufacturing plant and discomfort of people's lives. So, to protect the electricity equipment from the natural disasters and to supply the power to customer as stable, the supporting systems are required. In this paper, the research results are described the development process and the outcomes of the real-time natural disaster failure analysis information system including the describing about the impact of disaster and weather change, making the natural weather information, and linking the realtime monitoring system. As of development process, according to application development methodology, techniques are enumerated including the real time interface with related systems, the analysing the geographic information on the digital map using GIS application technology to extract the malfunction equipment potentially and to manage the equipments efficiently. Through this system makes remarkable performance it minimize the failures of the equipments, the increasing the efficiency of the equipment operation, the support of scientific information related on the mid-term enhancement plan, the savings on equipment investment, the quality upgrading of electricity supply, and the various supports in the field.

  • PDF

An Empirical Study on Real-Time Temperature and Concentration Measurement Through Optical Absorption Characteristic Analysis of Gas in a Large Combustion System (가스의 광 흡수 특성 분석을 통한 대형 연소시스템 내 실시간 온도 및 농도 계측에 관한 실증 연구)

  • Park, Jiyeon;So, Sunghyun;Park, Daeguen;Ryu, Changkook;Lee, Changyeop;Yoo, Miyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.29-38
    • /
    • 2020
  • It is practically difficult to accurately measure the temperature and concentration of a large combustion systems at industrial sites in real time. Temperature measurement using thermocouple, which are mainly used, is a point-measuring method that is less accurate and less reliable to analyze the wide area range of inner combustion system, and has limitations to internal accessibility. In terms of concentration analysis, most measurement methods use sampling method, which are limited by the difficulty of real-time measurement. As a way to overcome these limitations, laser-based measurement methods have been developed continuously. Laser-based measurement are line-average measurement methods with high representation and precision, which are beneficial for the application of large combustion systems. In this study the temperature and concentration were measured in real time by water vapor and oxygen generated during combustion using Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results showed that the average temperature inside the combustion system was 1330℃ and the mean oxygen concentration was 3.3 %, which showed similar tendency with plant monitoring data.

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF

Risk Assessment of Heavy Metals Migrated from Plastic Food Utensils, Containers, and Packaging Distributed in Korea (국내 유통 식품용 플라스틱 기구 및 용기, 포장의 중금속 위해도 평가)

  • Kyung Youn, Lee;Hyung Soo, Kim;Dae Yong, Jang;Ye Ji, Koo;Seung Ha, Lee;Hye Bin, Yeo;Ji Su, Yoon;Kyung-Min, Lim;Jaeyun, Choi
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Heavy metals can be intentionally or unintentionally introduced into plastic food utensils, containers, and packaging (PFUCP) as additives or contaminants, which can be ingested with food by humans. Here, seven-heavy metals (lead, cadmium, nickel, chromium, antimony, copper, and manganese) with toxicity concerns were selected, and risk assessment was done by establishing their migration from 137 PFUCP products made of 16 materials distributed in Korea. Migration of heavy metals was examined by applying 4% acetic acid as a food simulant (70℃, 30 minutes) to the PFUCP products. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for the analysis of migrated heavy metals, and the reliability of quantitative results was confirmed by checking linearity, LOD, LOQ, recovery, precision, and expanded uncertainty. As a result of monitoring, heavy metals were detected at a level of non-detection to 8.76 ± 11.87 ㎍/L and most of the heavy metals investigated were only detected at trace amounts of less than 1 ㎍/L on average. However, antimony migrated from PET products was significantly higher than other groups. Risk assessment revealed that all the heavy metals investigated were safe with a margin of exposure above 311. Collectively, we demonstrated that heavy metals migrated from PFUCP products distributed in Korea appear to be within the safe range.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Effect Analysis of Classical Line TI-21 type Audio Frequency Track Circuit from KTX Sancheon Return Current Harmonics (KTX산천 귀선전류고조파가 일반선 TI-21형 AF궤도회로에 미치는 영향분석)

  • Choi, Jae Sik;Kim, Hie Sik;Park, Ju Hun;Kim, Bun Gon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.38-45
    • /
    • 2016
  • The power transformation system of High Speed rolling stocks like KTX-Sancheon has shown excellent control capacities in the areas of riding comfortability, switching efficiency, safety and energy consumption due to technical developments in power-electronics, high speed & large scale integrated semiconductors and microprocessors. However, harmonics from IGBT, a high speed switching device used in the Convertor & Invertor equipment of rolling stocks have given rise to various problems in transformer substations, signaling systems, data transmission systems and facility monitoring systems. Especially, TI21 non-insulated track circuits have malfunctioned due to the influence of returning current harmonics which were generated at around of integer times of the number of power transformation equipment in the frequency domain. This paper, measures and analyzes various schemes to analyze the traveling path of the returning current harmonics generated due to the relationship between the rolling stocks and track circuits on site. Ultimately, theseschemes will be used to design high speed rolling stocks, AF track circuits and a common grounding network.

Long-Term Monitoring of Noxious Bacteria for Construction of Assurance Management System of Water Resources in Natural Status of the Republic of Korea

  • Bahk, Young Yil;Kim, Hyun Sook;Rhee, Ok-Jae;You, Kyung-A;Bae, Kyung Seon;Lee, Woojoo;Kim, Tong-Soo;Lee, Sang-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1516-1524
    • /
    • 2020
  • Climate change is expected to affect not only availability and quality of water, the valuable resource of human life on Earth, but also ultimately public health issue. A six-year monitoring (total 20 times) of Escherichia coli O157, Salmonella enterica, Legionella pneumophila, Shigella sonnei, Campylobacter jejuni, and Vibrio cholerae was conducted at five raw water sampling sites including two lakes, Hyundo region (Geum River) and two locations near Water Intake Plants of Han River (Guui region) and Nakdong River (Moolgeum region). A total 100 samples of 40 L water were tested. Most of the targeted bacteria were found in 77% of the samples and at least one of the target bacteria was detected (65%). Among all the detected bacteria, E. coli O157 were the most prevalent with a detection frequency of 22%, while S. sonnei was the least prevalent with a detection frequency of 2%. Nearly all the bacteria (except for S. sonnei) were present in samples from Lake Soyang, Lake Juam, and the Moolgeum region in Nakdong River, while C. jejuni was detected in those from the Guui region in Han River. During the six-year sampling period, individual targeted noxious bacteria in water samples exhibited seasonal patterns in their occurrence that were different from the indicator bacteria levels in the water samples. The fact that they were detected in the five Korea's representative water environments make it necessary to establish the chemical and biological analysis for noxious bacteria and sophisticated management systems in response to climate change.

Energy Performance Evaluation of Low Energy Houses using Metering Data (실측데이터를 이용한 저에너지주택의 에너지성능평가)

  • Baek, Namchoon;Kim, Sungbum;Oh, Byungchil;Yoon, Jongho;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.369-374
    • /
    • 2015
  • This study analyzed analyzes the energy performance of six houses in Daejeon completed which were built in 2011. Observed The observed houses, which were all designed and constructed inof the same size and structure, are were highly insulated with triple Low-E coating windows; the insulation level of the walls is was $0.13W/m^2K$ and that of the roof is was $0.10W/m^2K$. As electric houses, all of the energy supplied to the houses, including for cooking, is was supplied by electricity. A and 3~4 kWp of photovoltaic system and a 3~5 kW of ground source heat pump (GSHP) were installed in each house tofor providing provide space heating/and cooling and hot water are installed. We constructed a Web-based remote monitoring system in order to understand energy consumption and the dynamic behavior of the energy system. T, and the results of our metering data analysis of 2013 are as follows. First, the annual residential energy consumption is was 4,400 kWh (${\sigma}=1,209$) and GSHP energy consumption is was 5,182 kWh (${\sigma}=1,164$). Second, residential energy consumption ranked highest in average energy usage, with at 45% of the total, followed by heating with at 30%, hot water supply with at 17% and cooling with at 6%. Third, the average energy independence rate is was 51.8%, the GFA (Gross gross floor area) criteria average energy consumption unit is was $48.7kWh/m^2yr$ (${\sigma}=10.1$), and the net energy consumption unit (except the energy yield of the PV systems) is was $24.7kWh/m^2yr$ (${\sigma}=8.8$).

The Analysis of Avian Feed Source and Management Direction after the Introduction of Payments for Ecosystem Services: A Case Study of Janghang Wetland in Goyang (생태계 서비스 지불제 도입 후 조류 먹이원 분석 및 관리 방안: 고양 장항습지를 대상으로)

  • Hyun-Ah Choi;Eunjeong Kim;Eunjeong Lee;Insook Jung;Donguk Han
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.219-226
    • /
    • 2024
  • Payment for Ecosystem Services (PES) is emphasized to enhance ecosystem conservation and increase its ecological value. However, effective implementation of PES and policy execution requires insufficient ecosystem monitoring and research. Therefore, this study analyzed the effectiveness of PES implemented in Janghang Wetland to propose habitat management strategies. The study included monitoring migratory birds and analyzing key species' food sources. The dominant avian species observed in Janghang Wetland include Larus crassirostris, Anas platyrhynchos, Anser albifrons with their primary food sources analyzed as Gramineae plants such as Bromus japonicus, Elymus sibiricus, Brassicaceae plants such as Rorippa palustris. Furthermore, this study found that PES facilitates rice seed supply within Janghang Wetland, benefiting birds including Grus vipio, Anser fabalis, A. albifrons. To sustainable manage Janghang Wetland, improving food supply systems and exploring decentralized supply methods for G. vipio and Gooses (Anser fabalis, A. albifrons) are necessary. Additionally, managing boundaries between agricultural and developmental areas to improve ecological connectivity is essential. This study reaffirmed the ecological importance of Janghang Wetland as a crucial habitat for migratory species. The result will be significant as foundational data that can be used for future policy-making and support sustainable conservation efforts.