• 제목/요약/키워드: Monitoring Technology

검색결과 6,894건 처리시간 0.032초

Applications of online simulation supporting PWR operations

  • Wang, Chunbing;Duan, Qizhi;Zhang, Chao;Fan, Yipeng
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.842-850
    • /
    • 2021
  • Real Time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, Online Simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purposes of analyzing plant events and providing indicative signs of malfunctioning. An OLS system has been developed to support PWR operations for CPR1000 plants. The OLS system provides graphical user interface (GUI) for operators to monitor critical plant operations for preventing faulty operation or analyzing plant events. Functionalities of the OLS system are depicted through the maneuvering of the GUI for various OLS functional modules in the system.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

밀링공구의 마모 감시에 관한 연구 (A Study on the monitoring of tool wear in face milling operation)

    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.69-74
    • /
    • 1998
  • In order to monitor the tool wear in milling operation, cutting force is measured as the tool wear increased. The digital signal processing methods are used to detect the tool wear . As AR parameter extract the feature of tool wear , it can be used as input parameter of pattern classifier. The FFT monitor the tool wear exactly , but it can not do real time signal processing. The band energy method can be used to real time monitoring of tool wear ,but int can degrade the exact monitoring.

  • PDF

선삭공정에서 음압을 이용한 공구마멸 파손의 상태감시 (Condition Monitoring of Tool Wear and Breakage using Sound Pressure in Turning Processes)

  • 이성일
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.36-43
    • /
    • 1997
  • In order to make unmanned machining systems with satisfactory performances, it is necessary to incorporate appropriate condition monitoring systems in the machining workstations to provide the required intelligence of the expert. This paper deals with condition monitoring for tool wear and breakage during turning operation. Developing economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. The validity of the proposed system is confirmed through the large number of cutting tests.

  • PDF

Health Monitoring of High-rise Building with Fiber Optic Sensor (SOFO)

  • Mikami, Takao;Nishizawa, Takao
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.27-37
    • /
    • 2015
  • Structural health monitoring is becoming more and more important in the domain of civil engineering as a proper mean to increase and maintain the safety, especially in the land of earthquakes like Japan. In many civil structures, the deformations are the most relevant parameter to be monitored. In this context, a monitoring technology based on the use of long-gage fiber optic deformation sensor, SOFO is being applied to a 33-floors tall building in Tokyo. Sensors were installed on the $2^{nd}$ floor's steel columns of the building on May 2005 in the early stage of the construction. The installed SOFO sensors were dynamic compatible ones which enable both static and dynamic measurements. The monitoring is to be performed during the whole lifespan of the building. During the construction, static deformations of the columns had been measured on a regular basis using a reading unit for static measurement and dynamic deformation measurements were occasionally conducted using a reading unit for dynamic measurement. The building was completed on August 2006. After the completion, static and dynamic deformation measurements have been continuing. This paper describes a health monitoring technology, SOFO system which is applicable to high-rise buildings and monitoring results of a 33-floors tall building in Tokyo from May 2005 to October 2010.

생체정보 모니터링을 위한 기술적 이슈 (Technological Issues for Body Information Monitoring)

  • 박종만
    • 한국통신학회논문지
    • /
    • 제38B권2호
    • /
    • pp.105-114
    • /
    • 2013
  • 인체영역 무선네트워크(WBAN)기술 기반의 생체정보 모니터링서비스의 확장과 성장은 생체신호 감지 및 측정, 생체정보의 원격제어, 실시간 모니터링기술의 진화를 가속화시키고 있다. 기술진화에 대응한 선행기술 확보와 시장선점을 위해 생체정보 모니터링 시스템의 설계 및 구축은 최신 기술 동향과 표준화 이슈의 전략적인 반영이 필수적이다. 논문은 기술 및 연구개발 동향과 이슈를 조사, 분석하고 기술적 대응과제를 제시한다.

개인건강기록을 위한 실시간 심전도 모니터링 시스템 설계 및 구현 (Design and Implementation of Real-time ECG Monitoring System for Personal Health Records)

  • 김흥기;조진수
    • 반도체디스플레이기술학회지
    • /
    • 제11권3호
    • /
    • pp.45-50
    • /
    • 2012
  • In this paper, we propose a real-time ECG monitoring system for personal health records. This study aims to provide services that help patients to monitor their own physical condition and manage their own health records consistently, whereas existing medical services are Medical Institute-Centric model. The system is composed of web server, smart phone, and ECG meter, and web page. Without time and space restraints, It provides us with managing personal health records by performing patient's ECG measurement and real-time monitoring. And also Real-time bidirectional communication between smart phone and web page can be performed rapidly by applying the ECG monitoring with WebSocket Technology that follows HTML5 standard. Through this system, It can handle patient in need immediately.

펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구 (Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water)

  • 한승헌;김대근;정행윤;김선훈
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.