• Title/Summary/Keyword: Monitoring Tasks

Search Result 281, Processing Time 0.024 seconds

The Usage of Modern Information Technologies for Conducting Effective Monitoring of Quality in Higher Education

  • Oseredchuk, Olga;Nikolenko, Lyudmyla;Dolynnyi, Serhii;Ordatii, Nataliia;Sytnik, Tetiana;Stratan-Artyshkova, Tatiana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Information technologies in higher education are the basis for solving the tasks set by monitoring the quality of higher education. The directions of aplying information technologies which are used the most nowadays have been listed. The issues that should be addressed by monitoring the quality of higher education with the use of information technology have been listed. The functional basis for building a monitoring system is the cyclical stages: Observation; Orientation; Decision; Action. The monitoring system's considered cyclicity ensures that the concept of independent functioning of the monitoring system's subsystems is implemented.. It also ensures real-time task execution and information availability for all levels of the system's hierarchy of vertical and horizontal links, with the ability to restrict access. The educational branch uses information and computer technologies to monitor research results, which are realized in: scientific, reference, and educational output; electronic resources; state standards of education; analytical materials; materials for state reports; expert inferences on current issues of education and science; normative legal documents; state and sectoral programs; conference recommendations; informational, bibliographic, abstract, review publications; digests. The quality of Ukrainian scientists' scientific work is measured using a variety of bibliographic markers. The most common is the citation index. In order to carry out high-quality systematization of information and computer monitoring technologies, the classification has been carried out on the basis of certain features: (processual support for implementation by publishing, distributing and using the results of research work). The advantages and disadvantages of using web-based resources and services as information technology tools have been discussed. A set of indicators disclosed in the article evaluates the effectiveness of any means or method of observation and control over the object of monitoring. The use of information technology for monitoring and evaluating higher education is feasible and widespread in Ukrainian education, and it encourages the adoption of e-learning. The functional elements that stand out in the information-analytical monitoring system have been disclosed.

Design and Implementation of MEARN Stack-based Real-time Digital Signage System

  • Khue, Trinh Duy;Nguyen, Thanh Binh;Jang, UkJIn;Kim, Chanbin;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.808-826
    • /
    • 2017
  • Most of conventional DSS's(Digital Signage Systems) have been built based on LAMP framework. Recent researches have shown that MEAN or MERN stack framework is simpler, more flexible, faster and more suitable for web-based application than LAMP stack framework. In this paper, we propose a design and implementation of MEARN (ME(A+R)N) stack-based real-time digital signage system, MR-DSS, which supports handing real-time tasks like urgent/instant messaging, system status monitoring and so on, efficiently in addition to conventional digital signage CMS service tasks. MR-DSCMS, CMS of MR-DSS, is designed to provide most of its normal services by REST APIs and real-time services like urgent/instant messaging by Socket.IO base under MEARN stack environment. In addition to architecture description of components composing MR-DSS, design and implementation issues are clarified in more detail. Through experimental testing, it is shown that 1) MR-DSS works functionally well, 2) the networking load performance of MR-DSCMS's REST APIs is better compared to a well-known open source Xibo CMS, and 3) real-time messaging via Socket.IO works much faster than REST APIs.

Range Segmentation of Dynamic Offloading (RSDO) Algorithm by Correlation for Edge Computing

  • Kang, Jieun;Kim, Svetlana;Kim, Jae-Ho;Sung, Nak-Myoung;Yoon, Yong-Ik
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.905-917
    • /
    • 2021
  • In recent years, edge computing technology consists of several Internet of Things (IoT) devices with embedded sensors that have improved significantly for monitoring, detection, and management in an environment where big data is commercialized. The main focus of edge computing is data optimization or task offloading due to data and task-intensive application development. However, existing offloading approaches do not consider correlations and associations between data and tasks involving edge computing. The extent of collaborative offloading segmented without considering the interaction between data and task can lead to data loss and delays when moving from edge to edge. This article proposes a range segmentation of dynamic offloading (RSDO) algorithm that isolates the offload range and collaborative edge node around the edge node function to address the offloading issue.The RSDO algorithm groups highly correlated data and tasks according to the cause of the overload and dynamically distributes offloading ranges according to the state of cooperating nodes. The segmentation improves the overall performance of edge nodes, balances edge computing, and solves data loss and average latency.

Concept of an intelligent operator support system for initial emergency responses in nuclear power plants

  • Kang, Jung Sung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2453-2466
    • /
    • 2022
  • Nuclear power plant operators in the main control room are exposed to stressful conditions in emergency situations as immediate and appropriate mitigations are required. While emergency operating procedures (EOPs) provide operators with the appropriate tasks and diagnostic guidelines, EOPs have static properties that make it difficult to reflect the dynamic changes of the plant. Due to this static nature, operator workloads increase because unrelated information must be screened out and numerous displays must be checked to obtain the plant status. Generally, excessive workloads should be reduced because they can lead to human errors that may adversely affect nuclear power plant safety. This paper presents a framework for an operator support system that can substitute the initial responses of the EOPs, or in other words the immediate actions and diagnostic procedures, in the early stages of an emergency. The system assists operators in emergency operations as follows: performing the monitoring tasks in parallel, identifying current risk and latent risk causality, diagnosing the accident, and displaying all information intuitively with a master logic diagram. The risk causalities are analyzed with a functional modeling methodology called multilevel flow modeling. This system is expected to reduce workloads and the time for performing initial emergency response procedures.

Collective Navigation Through a Narrow Gap for a Swarm of UAVs Using Curriculum-Based Deep Reinforcement Learning (커리큘럼 기반 심층 강화학습을 이용한 좁은 틈을 통과하는 무인기 군집 내비게이션)

  • Myong-Yol Choi;Woojae Shin;Minwoo Kim;Hwi-Sung Park;Youngbin You;Min Lee;Hyondong Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.117-129
    • /
    • 2024
  • This paper introduces collective navigation through a narrow gap using a curriculum-based deep reinforcement learning algorithm for a swarm of unmanned aerial vehicles (UAVs). Collective navigation in complex environments is essential for various applications such as search and rescue, environment monitoring and military tasks operations. Conventional methods, which are easily interpretable from an engineering perspective, divide the navigation tasks into mapping, planning, and control; however, they struggle with increased latency and unmodeled environmental factors. Recently, learning-based methods have addressed these problems by employing the end-to-end framework with neural networks. Nonetheless, most existing learning-based approaches face challenges in complex scenarios particularly for navigating through a narrow gap or when a leader or informed UAV is unavailable. Our approach uses the information of a certain number of nearest neighboring UAVs and incorporates a task-specific curriculum to reduce learning time and train a robust model. The effectiveness of the proposed algorithm is verified through an ablation study and quantitative metrics. Simulation results demonstrate that our approach outperforms existing methods.

Process fault diagnostics using the integrated graph model

  • Yoon, Yeo-Hong;Nam, Dong-Soo;Jeong, Chang-Wook;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1705-1711
    • /
    • 1991
  • On-line fault detection and diagnosis has an increasing interest in a chemical process industry, especially for a process control and automation. The chemical process needs an intelligent operation-aided workstation which can do such tasks as process monitoring, fault detection, fault diagnosis and action guidance in semiautomatic mode. These tasks can increase the performance of a process operation and give merits in economics, safety and reliability. Aiming these tasks, series of researches have been done in our lab. Main results from these researches are building appropriate knowledge representation models and a diagnosis mechanism for fault detection and diagnosis in a chemical process. The knowledge representation schemes developed in our previous research, the symptom tree model and the fault-consequence digraph, showed the effectiveness and the usefulness in a real-time application, of the process diagnosis, especially in large and complex plants. However in our previous approach, the diagnosis speed is its demerit in spite of its merits of high resolution, mainly due to using two knowledge models complementarily. In our current study, new knowledge representation scheme is developed which integrates the previous two knowledge models, the symptom tree and the fault-consequence digraph, into one. This new model is constructed using a material balance, energy balance, momentum balance and equipment constraints. Controller related constraints are included in this new model, which possesses merits of the two previous models. This new integrated model will be tested and verified by the real-time application in a BTX process or a crude unit process. The reliability and flexibility will be greatly enhanced compared to the previous model in spite of the low diagnosis speed. Nexpert Object for the expert system shell and SUN4 workstation for the hardware platform are used. TCP/IP for a communication protocol and interfacing to a dynamic simulator, SPEEDUP, for a dynamic data generation are being studied.

  • PDF

A case study on middle school classes utilizing the math learning application 'Sussam' (수학학습 애플리케이션 '수쌤'을 활용한 중학교 수업 사례 연구)

  • Jieun Yuk;Nan Huh;Hokyoung Ko
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.273-294
    • /
    • 2024
  • Recently, interest in Edu-Tech, which applies new technologies to the educational field, is growing. Edu-Tech is now being naturally used in schools, allowing both teachers and students to adapt to these changes. Particularly, there's significant attention on using Edu-Tech to bridge the educational gap through various teaching and learning strategies. This study focuses on the importance of self-directed task management by students for supplementary learning. It developed and utilized a math learning platform that enables teachers to easily provide and manage necessary tasks for students. Initially, the study developed "Sussam-MathTeacher" a problem-based learning application for middle school students, aimed at enhancing problem-solving abilities. This platform operates as a task management system, allowing teachers to assign or recommend problems to either the entire class or individual students. It aims to improve students' problem-solving abilities through a process that includes presenting necessary tasks, monitoring their own progress in solving problems, and self-assessing growth. Through this study, students demonstrated improved problem-solving skills by tackling tasks suited to their levels using "Sussam" highlighting the critical role of teachers in the digital educational environment.

CNN Classifier Based Energy Monitoring System for Production Tracking of Sewing Process Line (봉제공정라인 생산 추적을 위한 CNN분류기 기반 에너지 모니터링 시스템)

  • Kim, Thomas J.Y.;Kim, Hyungjung;Jung, Woo-Kyun;Lee, Jae Won;Park, Young Chul;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.70-81
    • /
    • 2019
  • The garment industry is one of the most labor-intensive manufacturing industries, with its sewing process relying almost entirely on manual labor. Its costs highly depend on the efficiency of this production line and thus is crucial to determine the production rate in real-time for line balancing. However, current production tracking methods are costly and make it difficult for many Small and Medium-sized Enterprises (SMEs) to implement them. As a result, their reliance on manual counting of finished products is both time consuming and prone to error, leading to high manufacturing costs and inefficiencies. In this paper, a production tracking system that uses the sewing machines' energy consumption data to track and count the total number of sewing tasks completed through Convolutional Neural Network (CNN) classifiers is proposed. This system was tested on two target sewing tasks, with a resulting maximum classification accuracy of 98.6%; all sewing tasks were detected. In the developing countries, the garment sewing industry is a very important industry, but the use of a lot of capital is very limited, such as applying expensive high technology to solve the above problem. Applied with the appropriate technology, this system is expected to be of great help to the garment industry in developing countries.

TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program (태평양-인도양 해양순환 연구 프로그램)

  • Jeon, Dongchull;Kim, Eung;Shin, Chang Woong;Kim, Cheol-Ho;Kug, Jong Seong;Lee, Jae Hak;Lee, Youn-Ho;Kim, Suk Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.

A REVIEW OF STUDIES ON OPERATOR'S INFORMATION SEARCHING BEHAVIOR FOR HUMAN FACTORS STUDIES IN NPP MCRS

  • Ha, Jun-Su;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.247-270
    • /
    • 2009
  • This paper reviews studies on information searching behavior in process control systems and discusses some implications learned from previous studies for use in human factors studies on nuclear power plants (NPPs) main control rooms (MCRs). Information searching behavior in NPPs depends on expectancy, value, salience, and effort. The first quantitative scanning model developed by Senders for instrument panel monitoring considered bandwidth (change rate) of instruments as a determining factor in scanning behavior. Senders' model was subsequently elaborated by other researchers to account for value in addition to bandwidth. There is also another type of model based on the operator's situation awareness (SA) which has been developed for NPP application. In these SA-based models, situation-event relations or rules on system dynamics are considered the most significant factor forming expectancy. From the review of previous studies it is recommended that, for NPP application, (1) a set of symptomatic information sources including both changed and unchanged symptoms should be considered along with bandwidth as determining factors governing information searching (or visual sampling) behavior; (2) both data-driven monitoring and knowledge-driven monitoring should be considered and balanced in a systematic way; (3) sound models describing mechanisms of cognitive activities during information searching tasks should be developed so as to bridge studies on information searching behavior and design improvement in HMI; (4) the attention-situation awareness (A-SA) modeling approach should be recognized as a promising approach to be examined further; and (5) information displays should be expected to have totally different characteristics in advanced control rooms. Hence much attention should be devoted to information searching behavior including human-machine interface (HMI) design and human cognitive processes.