• Title/Summary/Keyword: Monitoring Systems

Search Result 4,425, Processing Time 0.03 seconds

The state of the art on bridge monitoring system in Korea (국내 교량 계측시스템 현황 파악 및 문제점 분석)

  • Park, Ki-Tae;Lee, Woo-Sang;Joo, Bong-Chul;Hwang, Yoon-Koog
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.465-468
    • /
    • 2008
  • The long term bridge monitoring system in Korea was installed in 1995 at first, and many bridges has been maintained by long term monitoring system. Recently, reliability of data and cost effectiveness has been increased by advanced sensor technology, measuring equipment. However, considering several reference and data on bridge monitoring systems in Korea, various problems of bridge monitoring systems can be found. Therefore, in this study, the state of the art on bridge monitoring systems in Korea were investigated and various problems and solutions for these problems were suggested.

  • PDF

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

Condition Monitoring of Reliability-Critical Components in Power Electronic Systems (전력전자 시스템에서 신뢰성 취약 소자의 상태 모니터링 방법)

  • Choi, Ui-Min;Lee, June-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.244-258
    • /
    • 2019
  • The reliability of power electronic systems becomes increasingly important, as power electronic systems have gradually gained an essential status in a wide range of industrial applications. Accordingly, recent research has made an effort to improve the reliability of power electronic systems to comply with stringent constraints on safety, cost, and availability. The condition monitoring of power electronic components is one of the main topics in the research area of the reliability of power electronic systems. In this paper, condition-monitoring methods of reliability-critical components in power electronic systems are discussed to provide the current state of knowledge by organizing and evaluating current representative literature.

Wide-area Frequency-based Tripped Generator Locating Method for Interconnected Power Systems

  • Kook, Kyung-Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.776-785
    • /
    • 2011
  • Since the Internet-based real-time Global Positioning System(GPS) synchronized widearea power system frequency monitoring network (FNET) was proposed in 2001, it has been monitoring the power system frequency in interconnected United States power systems and numerous interesting behaviors have been observed, including frequency excursion propagation. We address the consistency of a frequency excursion detection order of frequency disturbance recorders in FNET in relation to the same generation trip, as well as the ability to recreate by power systems dynamic simulation. We also propose a new method, as an application of FNET measurement, to locate a tripped generator using power systems dynamic simulation and wide-area frequency measurement. The simulation database of all the possible trips of generators in the interconnected power systems is created using the off-line power systems dynamic simulation. When FNET detects a sudden drop in the monitoring frequency, which is most likely due to a generation trip in power systems, the proposed algorithm locates a tripped generator by finding the best matching case of the measured frequency excursion in the simulation database in terms of the frequency drop detection order and the time of monitoring points.

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Power Quality Monitoring System with a New Distributed Monitoring Structure

  • Won, Dong-Jun;Chung, Il-Yop;Kim, Joong-Moon;Ahn, Seon-Ju;Moon, Seung-Il;Seo, Jang-Cheol;Choe, Jong-Woong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.214-220
    • /
    • 2004
  • Power quality monitoring is the cornerstone for power quality analysis, diagnosis and improvement. The measurement of power quality (PQ) evolves from instantaneous metering to continuous monitoring. Furthermore, recent technologies enable us to construct more flexible, reliable, rapid and economical power quality monitoring system (PQMS). Therefore, this paper presents an improved PQMS with a new distributed monitoring structure. The proposed PQMS consists of a PQ meter, PQ analyzer and GUI. The PQ meter only collects raw data and the PQ analyzer performs power quality analysis. It has several advantages compared to conventional structures in economic efficiency, modularity, speed, etc. PQ monitoring algorithms to catch steady-state trends and to detect PQ events are also adapted to the proposed structure. Using the proposed structure and monitoring algorithm, a prototype PQMS is constructed and real-time testing is performed.

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Developments in Hull Strength Monitoring (Developments in Hull Strength Monitoring)

  • P. A. Thomson;Ph. D BMT SeaTech Ltd.
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.143-143
    • /
    • 1996
  • Recent Class requirements and IMO recommendations concerning Hull Strength Monitoring (HSM) have prompted an increasing number of shipowner to adopt monitoring systems on bulk carriers and tanker. Such systems are designed to give warning when stress levels and the frequency and magnitude of ship motions approach levels which require corrective action. When fitted these systems provide enhanced operational safety and efficiency. This paper describes a development beyond the standard BMT HSM system through the integration of stress, motion and radar-based sea state monitoring with powerful, on-board, artificial intelligence (AI) tools. The latter utilises conceptual clustering techniques as an aid to pattern recognition in stress, fatigue. motion and sea state data clusters. This, in turn, provides additional operational guidance for ship's staff. Feedback from applications of the standard BMT HSM and extended HSM systems on board the British Steel Bulk Shipping fleet is described.

An Algorithm for Bit Error Rate Monitoring and Adaptive Decision Threshold Optimization Based on Pseudo-error Counting Scheme

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • Bit error rate (BER) monitoring is the ultimate goal of performance monitoring in all digital transmission systems as well as optical fiber transmission systems. To achieve this goal, optimization of the decision threshold must also be considered because BER is dependent on the level of decision threshold. In this paper, we analyze a pseudo-error counting scheme and propose an algorithm to achieve both BER monitoring and adaptive decision threshold optimization in optical fiber transmission systems. To verify the effectiveness of the proposed algorithm, we conduct computer simulations in both Gaussian and non-Gaussian distribution cases. According to the simulation results, BER and the optimum decision threshold can be estimated with the errors of < 20% and < 10 mV, respectively, within 0.1-s processing time in > 40-Gb/s transmission systems.

A Quantitative Performance Index for Discrete-time Observer-based Monitoring Systems (이산관측기에 근거한 감지시스템을 위한 정량적 성능지표)

  • Huh, Kun-Soo;Kim, Sang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.138-148
    • /
    • 1995
  • While Model-based Monitoring systems based on state observer theory have shown much promise in the laboratory, they have not been widely accepted by industry because, inpractice, these systems often have poor performance with respect to accuracy, band-width, reliability(false alarms), and robustness. In this paper, the linitations of the deterministic discrete-time state observer are investigated quantitatively from the machine monitoring viewpoint. The limitations in the transient and steady-state observer performance are quantified as estimation error bounds from which performance indices are selected. Each index represents the conditioning of the corresponding performance. By utilizing matrix norm theory, an unified main index is determined, that dominates all the indices. This index could from the basis for an observer design methodology that should improve the performance of model-based monitoring systems.

  • PDF