• Title/Summary/Keyword: Monitoring Devices

Search Result 1,123, Processing Time 0.026 seconds

The Design and Implementation of IoT based Remote Control System for Active Connected Cars (능동형 커넥티드 카를 위한 IoT기반 원격제어 시스템의 설계 및 구현)

  • Lee, Yun-Seop;Jang, Mun-Seok;Choi, Sang-Bang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.703-709
    • /
    • 2019
  • This paper proposes a monitoring and remote control system, an essential part of In Vehicle Infotainment (IVI) and Human Vehicle Interface (HVI) to provide safety and convenience to a driver. The system utilizes Bluetooth for a short range communication and utilizes WCDMA for a long range communication to enhance efficiency. In this paper, an integrated controller, which integrates a CAN communication module, a Bluetooth communication module, a WCDMA communication module, is designed to control a car. Also, a remote server for managing data is designed to provide real-time monitoring and remote control for a user via smart devices. Experiment results show that all the proposed remote control, driving log, real-time monitoring, and diagnostics functions are working properly. With the proposed system, a driver can drive safely by monitoring and inspecting a car before driving via smart devices, and control conveniently by controlling a car remotely.

Monitoring System of File Outflow through Storage Devices and Printers (저장매체와 프린터를 통한 파일유출 모니터링시스템)

  • Choi Joo-ho;Rhew Sung-yul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.51-60
    • /
    • 2005
  • The riles or intellectual property on computer systems have increasingly been exposed to such threats that they can be flowed out by internal users or outer attacks through the network. The File Outflow Monitoring System monitors file outflows at server by making the toe when users copy files on client computers into storage devices or print them, The monitoring system filters I/O Request packet by I/O Manager in kernel level if files are flowed out by copying, while it uses Win32 API hooking if printed. As a result, it has exactly made the log and monitored file outflows, which is proved through testing in Windows 2000 and XP.

Smart Factory's Environment Monitoring System using Bluetooth (블루투스를 이용한 스마트팩토리의 환경 모니터링 시스템)

  • Lee, Hwa-Yeong;Lee, Sung-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.224-226
    • /
    • 2021
  • Recently, in order to increase the efficiency of the product production process, the automation of facilities and devices in the factory is in progress, and a smart factory is being built using ICT and IoT technologies. In order to organically solve many problems occurring in the smart factory, a system for monitoring the wireless communication function between facilities and devices and the manufacturing process environment of the smart factory is required. In this paper, we propose a monitoring system using a Bluetooth module, a temperature/humidity sensor and a fine dust sensor to remotely monitor the process environment of a smart factory. The proposed monitoring system collect Arduino sensor values wirelessly through Bluetooth communication.

  • PDF

A Study on the Design and Real-Time Implementation of Robust Sensor Monitoring Device in Explosion Proof Industrial Site (방폭 산업 현장에 강인한 센서 모니터링 장치 설계 및 실시간 구현에 대한 연구)

  • Jeong-Hyun Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.

Muscular Condition Monitoring System Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 근육 상태 감시 시스템)

  • Kim, Heon-Young;Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.362-368
    • /
    • 2014
  • Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the musle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

Low Overhead System Monitoring Based on SNMP (SNMP를 이용한 효율적인 시스템 모니터링)

  • Kim, Tae-Su;Jeong, Chang-Young;Kim, Dong-Uk;Kim, Yong-Seok
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.175-182
    • /
    • 2005
  • SNMP is a standard protocol for management of networking devices. Nowadays, most computer systems have capability to act as SNMP agents. In this paper, we describe our system monitoring software based on SNMP. It consists of a monitoring server, SNMP agents, and client programs. The monitoring server collects status information from the SNMP agents running on the monitoring target graphical display. We developed two version of clients, Java based standalone program and Web based program. Since most known SNMP packages are too big and heavy, we developed an efficient version of SNMP library for out system monitoring.

  • PDF

Analysis of Vibration Signal for Failure Diagnosis of Rotating Devices (회전체 고장진단을 위한 진동 신호의 분석)

  • 임환조;김성동;정선환;홍성욱;오길호;박종희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.301-307
    • /
    • 1995
  • A monitoring technique of spindle fairure should be investirated prior to researcs of fairure diagnosis. This work is about monitoring of unbalanced shaft and defected bearings. The major work is done via experiments and the vibration signal is analysed means of power spectrum technique, and root mean squqre, peak-to-peak. Relationship is quantitatively investigated between defects and these monitoring paramenters.

  • PDF

Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices (회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈)

  • Kim, Chang Il;Yeo, Seo-Yeong;Park, Buem-Keun;Jeong, Young-Hun;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.311-317
    • /
    • 2019
  • Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

Implementation of Smart Devices and Applications for Monitoring the Load Power of Industrial Manufacturing Machine (산업용 생산 장비의 부하 전력 모니터링을 위한 스마트 디바이스와 애플리케이션의 구현)

  • Wahyutama, Aria Bisma;Yoo, Bongsoo;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.469-478
    • /
    • 2022
  • This paper contains the results of developing smart devices and applications to monitor the load power of the industrial manufacturing machine and evaluate its performance. The smart devices in this paper are divided into two functionalities, which are collecting load power along with operating environment data of industrial manufacturing machines and transmitting the data to servers. Load power data collected from the smart devices are uploaded to MariaDB inside the Amazon Web Service (AWS) server. Using the RESTFul API, the uploaded power data can be retrieved and shown on the web and mobile application in the form of a graph to provide monitoring capability. To evaluate the performance of the developed system, the response time from MariaDB to web and mobile applications was measured. The results is ranging from 0.0256 to 0.0545 seconds in a 4G (LTE) network environment and from 0.6126 to 1.2978 seconds in a 3G network environment, which is considered a satisfactory result.

A Implementation of Acer Pictum Sap Integrated Management System based on Energy Harvesting and Monitoring System (에너지 하베스팅 및 모니터링 기반의 고로쇠 수액 통합 관리 시스템 구현)

  • Jung, SeHoon;Jo, KyeongHo;Kim, JunYeoung;Park, Jun;Kim, JongChan;Choi, SooIm;Sim, ChunBo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1324-1337
    • /
    • 2019
  • This study set out to investigate an energy harvesting device to ensure stable energy supply to batteries and data collection devices and a monitoring system for acer pictum sap to check collected data. Acer pictum sap farmers have written down weather information and yield of acer pictum sap manually for data storage. Since the job is done manually, there are many missing values in their data. In addition, it is not easy to manage batteries due to the characteristics of the areas where acer pictum sap is collected. The present study thus decided to build an energy harvesting device based on new renewable energy to ensure stable energy supply by taking into consideration power load, daily power consumption, and number of days with no sunshine for various devices. For a monitoring system, the investigator proposed a JSP-based web page to monitor temperature, humidity, volume of collected water, and battery state in real time. The proposed energy harvesting device was applied to reduce missing values in data. It promoted stable energy supply to the batteries and data collection devices, reducing the percentage of missing values in data from 30.55% to 0%.