• Title/Summary/Keyword: Monetite

Search Result 3, Processing Time 0.02 seconds

Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent

  • Saghatchi, Hadis;Ansari, Reza;Mousavi, H. Zavvar
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1112-1119
    • /
    • 2018
  • Dicalcium phosphate nanoparticles (DCP-NPs) was synthesized chemically and used for adsorptive removal of uranyl ions from aqueous solutions in a batch system. A commercial grade of DCP (monetite) was also employed for comparison. The synthesized and commercial adsorbents (S-DCP and C-DCP) were characterized by FT-IR, SEM and XRD techniques. The investigation of adsorption isotherms indicated that the maximum adsorption capacities ($q_m$) for C-DCP and S-DCP were 714.3 and $666.7mg\;g^{-1}$ (at 293 K), respectively. The experimental kinetics were well-described by the pseudo-second-order kinetic and the equilibrium data were fitted with both Langmuir and Freundlich adsorption models. Thermodynamic studies indicated that the adsorption of uranyl ions on the monetite surface was a spontaneous exothermic process. The exhausted adsorbents could be regenerated by washing with $0.10mol\;L^{-1}$ NaOH.

Mineralogy of Secondary Phosphates and Sulfates Precipitated within the Sequence of Bat Guano Deposits in the Gossi Cave, Korea (고씨동굴 박쥐배설물 (Bat Guano) 퇴적층에 기인된 이차 인산염 및 황산염광물 특성)

  • Jun, Chang-Pyo;Lee, Seong-Joo;Kong, Dal-Yong;Kang, Il-Mo;Song, Yun-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.395-402
    • /
    • 2010
  • Mineralogical characterization was performed for the mineral assemblages precipitated at the boundary between limestone bedrock and bat guano deposits in the Gossi Cave, Korea. Francoanellite, taranakite, ardealite, brushite and monetite are observed as phosphate minerals and gypsum and a small amount of barite as sulfate minerals in the guano deposits. With the increase of depth, phosphates are changed as following sequence: taranakite ${\rightarrow}$ francoanellite ${\rightarrow}$ ardealite ${\rightarrow}$ brushite ${\rightarrow}$ monetite. This sequence indicates that the major parameters controlling the physico-chemical conditions under which these mineral assemblages were deposited are pH and relative humidity.

Synthesis of Calcium Phosphate Minerals from Biowaste Clam Shells Using Microwave Heating

  • Bramhe, Sachin;Ryu, Jae-Kyung;Chu, Min Cheol;Balakrishnan, Avinash;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.700-703
    • /
    • 2014
  • Calcium phosphate minerals are biologically important because of their application in the fields of orthopaedics and dentistry. Herein we have tried to synthesize calcium phosphate minerals from biowaste clam shells. A simple microwave method was used to synthesize a mixture of calcium phosphate minerals such as hydroxyapatite, tri-calcium phosphate, and monetite. The microwave induces vibration of the dipole ions in the reagent. The heating and rearrangement of ions and atoms occurs during the process. The phases obtained in the final powder were ascertained by X-ray diffraction; the morphology of each sample was checked using a scanning electron microscope. We were able to obtain a mixture of calcium phosphate minerals using the microwave method; the calcined powder showed a brick like morphology, which is different from the rod shape morphology of the hydroxyapatite obtained using the hydrothermal process.