• 제목/요약/키워드: Momentum loss

검색결과 127건 처리시간 0.022초

조류발전용 로터 블레이드의 최적 형상 설계 (Optimal Rotor Blade Design for Tidal In-stream Energy)

  • 양창조
    • 해양환경안전학회지
    • /
    • 제17권1호
    • /
    • pp.75-82
    • /
    • 2011
  • 해양에너지는 아직 개발되지 않은 가장 유망한 재생 및 청정에너지 자원 중 하나이다. 특히 우리나라는 세계적으로 보기 드문 조류발전의 적지이며, 이를 이용하기 위해서는 각 해역에 적합한 조류에너지 변환 장치의 개발이 매우 필요하다. 따라서 본 연구에서는 조류발전 방식 중 수평축 로터 블레이드의 최적형상 설계 및 성능평가를 목적으로 날개 끝 손실 모델을 포함하는 날개요소 운동량이론을 적용한 조류터빈 설계기법을 제안하고, 100 kW급 로터 블레이드를 설계하였다. 또한 블레이드 국부위치에서 주속비에 따른 Prandtl의 날개 끝 손실 변화를 비교하였으며, 정격 날개 끝 속도비에서 NACA63812를 사용하여 설계된 로터 블레이드의 동력계수는 0.49로 우수한 성능을 나타내었다.

상반각 정익이 천음속 축류 압축기 손실에 미치는 영향에 관한 연구 (Effect of the Dihedral Stator on the Loss in a Transonic Axial Compressor)

  • 황동하;최민석;백제현
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.5-12
    • /
    • 2015
  • This paper presents a numerical investigation of the effect of the dihedral stator on the loss in a transonic axial compressor. Four stator geometries with different stacking line variables are tested in the flow simulations over the whole operating range. It is found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occur at low mass flow rate. The hub dihedral stator and bowed blade generate unexpected hub-corner-separation, thereby causing a large total pressure loss over the entire operating range. However, the corresponding blockage forces the high momentum flow near the hub to divert toward the upper part of the passage suppressing the negative axial velocity region. The dihedral stator increases deflection angle and secondary vorticity near the endwall where the dihedral is applied. As a result, the endwall loss which is related to the endwall relative velocity decreases.

A Semi-empirical Mass-loss Rate in Short-period CVs

  • Kim, Woong-Tae;Sirotkin, Fedir V.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • We present the final results of our study on the mass-loss rate of donor stars in cataclysmic variables (CVs). Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T2, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M2dot of CVs as a function of P. The derived M2dot is at ~10-9.5-10-10 $M\odot$/yr and depends weakly on P when P > 90 min, while it declines very rapidly towards the minimum period when P < 90 min. The semi-empirical M2dot is significantly different from, and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P-M2dot relation is consistent with the angular momentum loss due to gravitational wave emission, and strongly suggests that CV secondaries with 0.075 $M\odot$ < M2 < 0.2 $M\odot$ are less than 2 Gyrs old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T1 of white dwarfs. Based on the semi-empirical M2dot, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.

  • PDF

부분적인 필터교체에 따른 청정실내부의 유동특성 (Flow Characteristics in a Clean Room after Divisional Filter Exchange)

  • 이재헌;박명식
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2110-2121
    • /
    • 1993
  • A numerical investigation has been carried out for the flow characteristics after exchange of some filters from the original layer to the new low pressure loss layer with equal filtering efficiency. The solution domain includes upper plenum, filter layer, clean space, access panels, and lower plenum. The concept of the distributed pressure resistance was applied to describe the momentum loss in filter layer and access panels. The evolution of the flow field is simulated using the low Reynolds number k-.epsilon. over bar turbulent model and SIMPLE algorithm based on the finite volume method. As a result, after the exchange of filter layer the power requirement can be reduced by 8-9 percent. The results also demonstrate that the perpendicularity of the flow near access panels may become worse at new filter layer than origianl filter layer. But the situation can be recovered by adjusting the jopening ratio of access panels.

냉각재 상실사고 후 격납건물내의 이상유동 연구 (A Study on the Two Phase Flow in the Floor of Containment Building after a Loss of Coolant Accident)

  • 배진효;박만흥;고철균;이재헌
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1274-1284
    • /
    • 1999
  • The Regulatory Guide 1.82 recommends an analysis of hydraulic performance for sump of ECCS (Emergency Core Cooing System) when LOCA(Loss of Coolant Accident) occurs in a nuclear power plant. The present study deals with 3-dimensional, unsteady, turbulent and two-phase flow simulation to examine the behavior of mixture of reactor coolant and debris near the floor of containment building in conjunction with appropriate assumptions. The dispersed solid model has been adjusted to the interfacial momentum transfer between reactor coolant and debris. According to the results, the counterclockwiserecirculation zone had been formed in the region between sump and connection aisle about 376 second after LOCA occurs. The debris thickness accumulated on a sump screen periodically increases or decreases up to 2000 second, afterwards its peak decreases.

오탁방지막이 설치된 3차원 흐름 수치모델 (Three-Dimensional Numerical Model for Flow with Silt Protector)

  • 홍남식;김가야;강윤구
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.1-7
    • /
    • 2008
  • In this study, a mathematical model for flaw with silt protector is proposed that adds a second-order energy loss term in the momentum equation. The three-dimensional numerical model was developed based on mathematical models and verified through comparison with flume test results. Loss coefficients were evaluated through the flume tests and applied to the numerical model. It was found through the investigation of various example cases that the downstream flow pattern was affected mainly by penetration of the silt curtain, not by the approach velocity, and also that the blocking effect of velocity was increased by the increase in mesh density of the silt curtain, below a certain mesh density. The blocking effect did not increase further above a certain mesh density.

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

선회익위치(旋回翼位置)에 따른 선회화염(旋回火焰)에 관한 연구(硏究) (A Study on the Swirl Flame according to the Swirler Position)

  • 정성찬;채재우
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.107-115
    • /
    • 1989
  • The swirl flame was investigated experimentally by measuring the temperature distribution, and the combustion gas concentrations. The flame structure of the swirl flame was influenced not by the swirl vane angle but by the swirler position. Due to the momentum loss as the swirler position was moved downward under the nozzle exit, the flame length was increased. Meanwhile the temperature and $CO_2$-concentrations were decreased.

  • PDF

The Performance Analysis Method with New Pressure Loss and Leakage Flow Models of Regenerative Blower

  • Lee, Chan;Kil, Hyun Gwon;Kim, Kwang Yeong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.221-229
    • /
    • 2015
  • For efficient design process of regenerative blower, the present study provides new generalized pressure and leakage flow loss models, which can be used in the performance analysis method of regenerative blower. The present performance analysis on designed blower is made by incorporating momentum exchange theory between impellers and side channel with mean line analysis method, and its pressure loss and leakage flow models are generalized from the related fluid mechanics correlations which can be expressed in terms of blower design variables. The present performance analysis method is applied to four existing models for verifying its prediction accuracy, and the prediction and the test results agreed well within a few percentage of relative error. Furthermore, the present performance analysis method is also applied in developing a new blower used for fuel cell application, and the newly designed blower is manufactured and tested through chamber-type test facility. The performance prediction by the present method agreed well with the test result and also with the CFD simulation results. From the comparison results, the present performance analysis method is shown to be suitable for the actual design practice of regenerative blower.

재생형 송풍기의 공력음향학적 성능 해석 방법 (Aero-acoustic Performance Analysis Method of Regenerative Blower)

  • 이찬;길현권;김강천;김준곤;마재현;정경호
    • 한국유체기계학회 논문집
    • /
    • 제16권2호
    • /
    • pp.15-20
    • /
    • 2013
  • An aero-acoustic performance analysis method of regenerative blower is developed as one of the FANDAS codes. The aerodynamic performance of regenerative blower is predicted by using momentum exchange theory coupled with pressure loss and leakage flow models. Based on the performance prediction results, the noise level and spectrum of regenerative blower are predicted by discrete frequency and broadband noise models. The combination of the performance and the noise prediction methods gives aero-acoustic performance map and noise spectrum analysis results, which are well-agreed with the actual measurement results within a few percent relative error.