• Title/Summary/Keyword: Momentum Factor

Search Result 130, Processing Time 0.028 seconds

Spectral analysis of semi-actively controlled structures subjected to blast loading

  • Ewing, C.M.;Guillin, C.;Dhakal, R.P.;Chase, J.G.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.79-93
    • /
    • 2009
  • This paper investigates the possibility of controlling the response of typical portal frame structures to blast loading using a combination of semi-active and passive control devices. A one storey reinforced concrete portal frame is modelled using non-linear finite elements with each column discretised into multiple elements to capture the higher frequency modes of column vibration response that are typical features of blast responses. The model structure is subjected to blast loads of varying duration, magnitude and shape, and the critical aspects of the response are investigated over a range of structural periods in the form of blast load response spectra. It is found that the shape or length of the blast load is not a factor in the response, as long as the period is less than 25% of the fundamental structural period. Thus, blast load response can be expressed strictly as a function of the momentum applied to the structure by a blast load. The optimal device arrangements are found to be those that reduce the first peak of the structural displacement and also reduce the subsequent free vibration of the structure. Semi-active devices that do not increase base shear demands on the foundations in combination with a passive yielding tendon are found to provide the most effective control, particularly if base shear demand is an important consideration, as with older structures. The overall results are summarised as response spectra for eventual potential use within standard structural design paradigms.

Measurement of swimming ability of silver fish (Plecoglossus altivelis) using a Particle Imaging Velocimetry (입자영상유속계를 이용한 은어 (Plecoglossus altivelis)의 유영능력 측정)

  • Bae, Jae-Hyun;Lee, Kyoung-Hoon;Shin, Jong-Keun;Yang, Yong-Su;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.411-418
    • /
    • 2011
  • As a fish way is a structure for fish migrating well toward upper stream due to breaking river flow by a dam or dammed pool, the specific fish's swimming ability is one of the main factors in making a plan and managing it. In addition, it also needs to understand the current field in fish road to evaluate its performance. This study is aimed to analyze the swimming patterns with current velocity changes using a Particle Imaging Velocimetry (PIV) in order to understand the swimming ability of silver fish (Plecoglossus altivelis) that is one of the fishes migrating through the fish way of Nakdong River, and to analyze the 2 dimensional current field near to silver fish at swimming momentum. The results showed that average values of tail beat frequencies for continuous swimming with current velocity were 2.8 Hz at 0.3 m/s, 3.2 Hz at 0.4 m/s, 3.8 Hz at 0.5 m/s, respectively. The wake would be produced by direction turning of fish's tail fin and its magnitude would be verified by the difference of pressure. The pressure turbulent flow produced by its tail beat would be made in both sides, and then, the magnitude of wake should be the source of moving direction. The swimming momentum will help to support the primary factor in making a suitable design for specific fish species migrating toward the district river.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape (채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구)

  • Jeon, Seung-Won;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

RE-ACCELERATION MODEL FOR THE 'TOOTHBRUSH' RADIO RELIC

  • KANG, HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.83-92
    • /
    • 2016
  • The Toothbrush radio relic associated with the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, Mradio ≈ 2.8, is larger than that estimated from X-ray observations, MX ≲ 1.5, we consider the re-acceleration model in which a weak shock of Ms ≈ 1.2 - 1.5 sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, s ≈ 4.6, and the cutoff Lorentz factor, γe,c ≈ 7-8×104 can reproduce reasonably well the observed profiles of radio uxes and integrated radio spectrum of the head portion of the Toothbrush relic. This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.

A study on the boundary layer characteristics of TP620 hydrofoil in the steady state (정상상태인 박용 TP620 익형의 경계층 특성 연구)

  • 서봉록;김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.50-56
    • /
    • 1986
  • This report deals with a study on the boundary layer characteristics of TP620 hydrofoil in the steady state by using two dimensional boundary layer theory. On the basis of complex velocity and laminar and turbulent boundary layer theory, the author attempts to know some tendency by evaluating the performance characteristic values of TP620 hydrofoil working in a uniform flow. In deriving characteristic values, he calculates numerically velocity, momentum thickness, skin friction coefficient, shape factor, and displacement thickness on the TP620 hydrofoil working at each attack angle in a uniform flow. Applying this present numerical calculation using Thwaites' and Head's method, the results of boundary layer on the hydrofoil are shown to be influenced by surface velocity and attack angle.

  • PDF

Cross-Border Asset Pledgeability for Enhanced Financial Stability

  • Choi, Gongpil
    • East Asian Economic Review
    • /
    • v.24 no.1
    • /
    • pp.89-124
    • /
    • 2020
  • Even with the sizable Foreign Exchange (FX) holdings and good credit ratings of its top assets, Asia remains vulnerable to various shocks. This paper highlights the limited cross-border asset pledgeability as a significant factor for the lingering vulnerability in Asia. The dichotomy in asset holdings between pledgeable FX and non-pledgeable domestic assets in major economies in Asia has been the source of increasing stabilization costs as well as weakened market momentum in the region. Specifically, the peculiar feature of asset holdings in Asia reflects seriously deficient cross-border asset pledgeability that is left unaddressed. Asset pledgeability contributes toward financial stability via three channels: 1) capital market development by recognizing the role of collateral, 2) increased shock absorption capacity via collateral management, 3) and the newly activated safe asset provision. Therefore, it is crucial to go beyond the usual market development strategy and expand the overall asset pledgeability in the region that has remained unduly depressed.

A Study on the Pressure Rising Considered Fluid Inertia in the Notch Area of Balanced Type Vane Pump (노치 영역에서 유체 관성을 고려한 압력 평형형 베인 펌프의 압력 상승에 관한 연구)

  • 조명래;한동철;문호지;박민호;배홍용
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.168-175
    • /
    • 1996
  • This paper reports on theoretical study of the pressure overshoot in the delivery ports and pressure rising within balanced type vane pump. Pressure overshoot occur due to the accelerated fluid through the notch, so, result in pressure ripple, flow ripple, and noise. For calculating the pressure rising and fluctuations of pressure, we have modeled mathematically used continuity equation based on compressibility and momentum equation considered fluid inertia in the notch, and analyzed simultaneously. As a results of analysis, we have found oscillation of pressure and compression chamber pressure depend on the rotational speeds, bulk modulus of working fluid, notches, number of vane and camring. Using the model, notches have been shown to be important design factor in relaxing the rapid pressure rising and reducing the amplitudes of pressure overshoot.

  • PDF

Magnetic Impact Actuator for Robotic Endoscope (대장내시경을 위한 자기 충격 액츄에이터)

  • 민현진;임형준;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.839-843
    • /
    • 2001
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes are not seemed to be replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope able to maneuver safely in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfer momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjusting impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulation experiments show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

  • PDF

Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm (HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF