• Title/Summary/Keyword: Momentum Coupling Method

Search Result 24, Processing Time 0.024 seconds

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du;Jingwei, Zhou;Fengming, Li
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.353-368
    • /
    • 2022
  • Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • To adequately analyze flows in pipe or duct network system, traditional node-based junction coupling methods require the junction loss which is specified by empirical or analytic correlations. In this paper, a new finite volume junction coupling method using a ghost junction cell is developed by considering the interchange of linear momentum as well as the important wall-effect at junction without requiring any correlation on the junction loss. Also, boundary treatment is modified to preserve the stagnation enthalpy across boundaries, such as pipe-end and the interface between junction and branch. Also, the computational accuracy and efficiency of the Godunov-type finite volume schemes are investigated by tracing the total mechanical energy of rapid transients due to sudden closure of valve at downstream end.

Analysis of flow in a square cavity with an oscillating top wall (진동하는 윗벽면을 가진 정방형 웅덩이 안에서의 흐름)

  • Min, Byeong-Gwang;Jang, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.392-404
    • /
    • 1997
  • The flow induced by the oscillatory motion of a solid body is important in a number of practical problems. As the solid boundary oscillates harmonically, there is steady streaming motion invoked by the Reynolds stresses, which could cause extensive migration of the fluid during a period of fluid motion. We here analyzed the flow in a square cavity with an oscillating top wall for the parameters which make the time derivatives and the convective terms equally important in the entire cavity flow. The full Navier-Stokes equations are solved by the second-order time accurate Momentum Coupling Method which is devised by the authors. The particular numerical scheme does not need subiteration at each time step which is usually a required process to calculate the incompressible Navier-Stokes equations. The effect of two parameters, the Reynolds number and the frequency parameter, on the oscillatory flow has been investigated.

Numerical Analysis of Evolution of Thermal Stratification in a Curved Piping System

  • Park, Seok-Ki;Nam, Ho-Yun;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.169-179
    • /
    • 2000
  • A detailed numerical analysis of the evolution of thermal stratification in a curved piping system in a nuclear power plant is performed. A finite volume based thermal-hydraulic computer code has been developed employing a body-fitted, non-orthogonal curvilinear coordinate for this purpose. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of momentum interpolation method. The SIMPLE algorithm is employed for the pressure and velocity coupling, and the convection terms are approximated by a higher-order bounded scheme. The thermal-hydraulic computer code developed in the present study has been applied to the analysis of thermal stratification in a curved duct and some of the predicted results are compared with the available experimental data. It is shown that the predicted results agree fairly well with the experimental measurements and the transient formation of thermal stratification in a curved duct is also well predicted.

  • PDF

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Research Trend of Topological Insulator Materials and Devices (위상절연체 소재 및 소자 기술 개발 동향)

  • W.J. Lee;T.H. Hwang;D.H. Cho;Y.D. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Topological insulators (TIs) emerge as one of the most fascinating and amazing material in physics and electronics. TIs intrinsically possess both gapless conducting surface and insulating internal properties, instead of being only one property such as conducting, semiconducting, and insulating. The conducting surface state of TIs is the consequence of band inversion induced by strong spin-orbit coupling. Combined with broken inversion symmetry, the surface electronic band structure consists of spin helical Dirac cone, which allows spin of carriers governed by the direction of its momentum, and prohibits backscattering of the carriers. It is called by topological surface states (TSS). In this paper, we investigated the TIs materials and their unique properties and denoted the fabrication method of TIs such as deposition and exfoliation techniques. Since it is hard to observe the TSS, we introduced several specialized analysis tools such as angle-resolved photoemission spectroscopy, spin-momentum locking, and weak antilocalization. Finally, we reviewed the various fields to utilize the unique properties of TIs and summarized research trends of their applications.

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70

COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES (CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현)

  • Park, I.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

NUMERICAL STUDY ON THE MICRO-LINE PATTERNING PROCESS USING AN INKJET PRINGTING METHOD (잉크젯 방법을 통한 마이크로 라인 형성에 관한 수치적 연구)

  • Lee, W.R.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.548-550
    • /
    • 2010
  • The droplet motion on a flat substrate with contact angle hysteresis is studied by solving the equations governing the conservation of mass and momentum. The liquid- gas interface is determined by an level-set method which is based on a sharp-interface representation for accurately imposing the matching or coupling conditions at the interface. The method is modified to treat the dynamic contact angle at the liquid-gas-solid interface. The computations are performed to investigate a droplet impact and merging pattern on a flat substrate to find a optimal condition in a micro-line patterning process. The effects of dynamic contact angles on droplet motion are quantified.

  • PDF