• Title/Summary/Keyword: Moment-Rotation-curves

Search Result 42, Processing Time 0.023 seconds

The Changes of Joint Moments According to Weight Loading Gait on Normal Adults (정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

On the Influence of the Moment of Inertia of Gas on the Galactic Rotation Curves

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.

Moment of Inertia of Gas as a Source of Added Gravitational Field in Galaxies

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.59-65
    • /
    • 2022
  • In this paper we propose a new perspective for explaining galaxy rotation curves. We conjecture that there is a gravitational moment of inertia which, together with gravitational mass, contributes to the gravitational potential. We substantiate a formula for the potential created by the moment of inertia. We validate our model by computing orbital rotation velocities for several galaxies and showing that computed rotation velocities correspond to the observed ones. Our proposed approach is capable of accounting for constant gas velocities outside of a galactic disc without relying on the dark matter hypothesis. Furthermore, it addresses several problems faced by the application of the dark matter hypothesis, e.g., the absence of inward collapse of dark matter into a galaxy, the spherical distribution of dark matter around galaxies, and absence of traces of the effect of dark matter in two ultra-diffuse galaxies, NGC 1052-DF2, and NGC 1052-DF4.

Flexural behavior of partially-restrained semirigid steel connections

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.441-458
    • /
    • 2001
  • We analyzed the experimental and theoretical behavior of a particular type of steel joint designed to connect beam to beam and able to transfer both shear forces and bending moments. This joint is characterized by the use of steel plates and bolts enclosed in the width of the beams. The experimental investigation was carried out characterizing the constituent materials and testing in flexure beams constituted by two portions of beams connected in the middle with the joint proposed. Connections having different characteristics in terms of thickness of plates, number and type of bolts were utilized. Flexure tests allow one to determine the loaddeflection curves of the beam tested and the moment-rotation diagrams of the connections, highlighting the strength and the strain capacity of the joints. The proposed analytical model allows one to determine the moment-rotation relationship of the connections, pointing out the influence of the principal geometrical and mechanic characteristics of single constituents on the full properties of the joint.

Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH (상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동)

  • 홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 1999
  • The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.

  • PDF

An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear (전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구)

  • Lee, Soo-Kueon;Hong, Kap-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.65-73
    • /
    • 2000
  • The behavior of double angle connections is analyzed by 3D finite element method using ABAQUS(ver 5.8). Moment-rotation curves for the connections are generated, as well as stress distribution for angle and bolt. Double angle connections have various angle thickness, gage distance and number of bolt. Parameters, such as initial stiffness, plastic tiffness, reference load and curve shape parameter were obtained by regression method using Richard's formula. These parameter lead to predict nonlinear behavior of double angle connection. Design curves giving the parameters of the moment-rotation curves are generated. These parameters are primarily a function of the angle thickness, gage distance and the number of bolts in the connection. Using these parameters, connection moment and its ratio to the full plastic moment capacity Mp of the beam are calculated.

  • PDF

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.

Investigation and Numerical Analysis of Node Connectors in Free-Form Spatial Structures

  • Hwang, Kyung-Ju;Park, Don-U;Park, Sun-Woo;Knippers, Jan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.87-95
    • /
    • 2007
  • The recent completions of free-form spatial structures provide us a very attractive form. To realize such an extraordinary shape, it is absolutely necessary that the connector systems have to be investigated the characteristics of the systems and analyzed with a practicable method. In this context, this research consists of not only literature research but also numerical analysis with selected connector systems, which was adopted in real free-form spatial structures. For numerical analysis, especially, finite element analysis (FEA) is performed with a various test parameter using a commercial program ANSYS. Consequently, the general characteristics of node connectors the moment-rotation-curves are presented by considering a large deformation effect as well as a multi-linear material properties.

  • PDF

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He;Yangchao Ru;Haifeng Bu;Ming Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

Fire performance curves for unprotected HSS steel columns

  • Shahria Alam, M.;Muntasir Billah, A.H.M.;Quayyum, Shahriar;Ashraf, Mahmud;Rafi, A.N.M.;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.705-724
    • /
    • 2013
  • The behaviour of steel column at elevated temperature is significantly different than that at ambient temperature due to its changes in the mechanical properties with temperature. Reported literature suggests that steel column may become vulnerable when exposed to fire condition, since its strength and capacity decrease rapidly with temperature. The present study aims at investigating the lateral load resistance of non-insulated steel columns under fire exposure through finite element analysis. The studied parameters include moment-rotation behaviour, lateral load-deflection behaviour, stiffness and ductility of columns at different axial load levels. It was observed that when the temperature of the column was increased, there was a significant reduction in the lateral load and moment capacity of the non-insulated steel columns. Moreover, it was noted that the stiffness and ductility of steel columns decreased sharply with the increase in temperature, especially for temperatures above $400^{\circ}C$. In addition, the lateral load capacity and the moment capacity of columns were plotted against fire exposure time, which revealed that in fire conditions, the non-insulated steel columns experience substantial reduction in lateral load resistance within 15 minutes of fire exposure.