• Title/Summary/Keyword: Moment Spectrum

Search Result 150, Processing Time 0.026 seconds

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

Optical Behavior of Azobenzene Functionalized Dendrimer in Organic Monolayers (아조벤젠이 기능화된 덴드리머 유기단분자막의 광학적 거동)

  • 신훈규;손정호;김병상;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.627-633
    • /
    • 2002
  • Many isolated featureless domains were explicitly observed even at the air-water interface. We measured the surface pressure shift originating from the photo-isomerization of azobenzene units on the periphery of dendrimers. The maximum surface pressure was gradual1y increased and saturated by cyclic compression and decompression. By irradiation of 365 [nm] light, the surface pressure was increased, which was originated by the photo-isomerization process of the azobenzene group on the periphery from trans to cia form. The increase of the dipole moment ($\mu$), which may increase the interaction among Azo dendrimer molecules, made an important role on surface pressure shift. From the absorbance spectrum by UV irradiation and heat treatment, we can see that the absorbance in the UV region decreases with the increase of the UV irradiation time, but the peak at 350 m, characteristic of dendrimers in the LB monolayers, was not shifted until four irradiation cycles. This suggests that optical behavior and morphological change are affected by the functional group and the symmetric chain.

The proton nuclear magnetic resonance spectral analysis of human blood plasma lipoprotein (혈장지 단백질에 대한 핵자기 공명 분광 분석)

  • Song, In-Chan;Kang, Sa-Ouk;Kim, Noe-Kyeong;Im, Jung-Gi;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.29-34
    • /
    • 1989
  • 300 MHz proton NMR spectra of human blood plasma were analyzed by deconvolution of spectrum, and we compared its results with Fossel's test in normal (15 cases), liver cancer (14 cases) , and other cancer (14 cases) groups. This analysis had enabled us to obtain dynamic characteristics of each individual lipoprotein. As a result of deconvolution method, the VLDL and chylomicron intensity level were found to be elevated in the patients with liver cancer. Moment ratio values of $CH_2$ resonance in the raw spectrum were found to be higher than the normal group for patients with, malignant tumors other than liver cancer. These differences between the three groups could not be found in the conventional Fossel's test. We could simulate plasma spectra by addition of spectra of individual lipoproteins through deconvolution method. Further clinical trials in larger populations and additional biochemical method may shed new light on many of clinical and biochemical interests for knowing characteristics about lipoprotein not separated from blood and the background of Fossel test.

  • PDF

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

Seismic linear analytical research on the mechanical effects of RC frame structure under the different column orientations

  • Mo Shi;Min-woo Choi;Yeol Choi;Sanggoo Kang
    • Architectural research
    • /
    • v.26 no.3
    • /
    • pp.83-92
    • /
    • 2024
  • The profound impact of earthquakes on human lives and the built environment emphasizes the substantial human and economic losses result-ing from structural collapses. Many researchers in this field highlight the longstanding societal challenge posed by earthquakes and under-score the imperative to minimize such losses. Over the decades, researchers have dedicated efforts to seismic design, focusing on improv-ing structural performance to mitigate earthquake-induced damages. This has led to the development of various structural analysis methods. In this research, a specific RC frame structure (401 Bldg.) at Kyungpook National University that is designed for educational purposes, serves as a representative case. This research employs SAP 2000 for simulation, aiming to assess the structural performance under seismic condi-tions, focusing on evaluating the structural behavior under different column orientations. This research utilizes RSA (Response Spectrum Analysis) to comprehensively examine parameters of displacement, base shear force, base moment, joint radians, and story drift. Referring to the results from RSA, this research also assesses the structural performance using LTHA (Linear Time History Analysis) by conducting synthetic frequency domain and synthetic time domain analyses based on the seismic wave from the Kobe 1995 earthquake (Abeno). Based on the findings from the discussions, this research is expected to be a valuable reference for structural design within seismic resistance and the seismic reinforcement of existing RC frame structures.

The Effect of Sampling Rate on Statistical Properties of Extreme Wave (파랑자료의 sampling rate가 극한파의 통계에 미치는 영향)

  • Kim, Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this paper time series wave data are simulated using wave spectrum with random phases of the wave signal. The simulated wave signals are used to study the effect of the sampling rate on the ocean wave characteristics. Effect of sampling rate on wave data which include extreme wave such as freak waves are examined and various wave characteristics including abnormality index (AI), kurtosis of wave profile and maximum wave height are examined. Various wave heights are decreased as the sampling rate decreases. The zero-th moment of the wave spectrum does not affect much on the sampling rate but the second moment are greately affected on the sampling rate. The error due to the sampling rate is decreases as the wave period increases. The error in significant wave height based on the wave spectrum $H_s$ is smaller than that on the time domain method $H_{1/3}$. AI index and kurtosis of wave profile do not deviate much from the exact date as long as the sampling rate is greater than 1 Hz. Ocean wave measurement with the sampling frequency higher than 1 Hz will result the error less than 5% in estimating the height of extreme waves.

Nitrogen adsorption on the stepped planes of tungsten: II. W(210) and W(310) plane (계단형 텅스텐 결정면의 질소 흡착에 관한 연구: II. W(210) 및 W(310)면)

  • 최대선;한종훈;백선목;박노길;김용욱;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.301-308
    • /
    • 1996
  • The heat of desorption and the work function change induced by nitrogen adsorption on the slepped tungstein surface plants, W(210) and W(310), are measured using the Field Electron Emission Microscope(FEM). The adsoption sites are predicted from the Thermal Desortion Spectra(TDS). The wirk function change of both W(210) and W(310) planes increase as increasing the nitrogen dose and saturates at the nitrogen dose about 5 Langmuir to 0.29 eV and 0.20 eV respectively. We find three adsorption site on each plane for the low dose range. The TDS result shows that the intensity of $\alpha_1$ state on W(310) is much stronger than that of $\alpha_1$ state on W(210), and the direction of nitrogen dipole moment adsorbed on the sites correspond to $\alpha_1$ and $\beta_2$ state on W(210) and W(310) planes are in the opposite direction to that of the equivalent states on W(100) plane. From this observation we can predict the relative atomic position in the z-direction (perpendicular direction to the surface) of nitrogen molecules/atoms adsorbed on these sites.

  • PDF

Evaluation of inelastic performance of moment resisting steel frames designed by resizing algorithms (재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가)

  • Seo, Ji Hyun;Kwon, Bong kwon;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.361-371
    • /
    • 2006
  • In recent years, to overcome drawbacks related to the aplicati on of classical structural optimization algorithms, various drift design methods based on factores of member displacement participation factors have been developed to size members if they satisfy stiffness criteria. In particular, a resizing algorithm based on dynamic displacement participation factors from the response spectrum analysis has been applied in the drift design of steel structures subjec ted to seismic lateral forces. In this aproach, active members are selected for displacement control based on the displacement participation fa ve members may be taken out and added to the active members for the drift control. The resizing algorithm can be practically and effectively applied to drift design of high-rise buildings however, the inelastic behavior o f the resizing algorithm has not ben evaluated yet. To develop the resizing algorithm considering the performance of nonlinearity as well a s elastic stifness, the evaluation model of resizing algorithm s is developed and aplied to the examples of moment-resisting steel frame, which is one of the simplest structural systems. The inelastic behavior of moment-resisting steel frame designed by the resizing algorithm is also discussed.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.