• Title/Summary/Keyword: Moment Arm

Search Result 98, Processing Time 0.02 seconds

Analysis and Process Design of Hot Pipe Bending Process With Small Bending Radius (작은 곡률반경 파이프 벤딩을 위한 열간 파이프 벤딩공정 해석 및 설계)

  • 류경희;김동진;김병민;이동주
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.329-337
    • /
    • 2001
  • The finite element simulation model and the program to calculate the reverse moment have been developed to analyse the stress state and deformation of pipe bending using local induction heating with small bending radius in this study. The reverse moment that is to be applied on the bending arm to control the wall thinning ratio of the bending outside to within a particular value. Even though the demand of pipes with small bending radius is increasing in power plants and ship buildings, the welded elbows are still widely used. The bending process with or without a reverse moment acting on the bending arm has been simulated. The reverse moments calculated from the developed program are in good agreement with the finite element simulations and the experiments.

  • PDF

Bilateral Comparison of Effective Moment Arms of the Quadriceps force on Unilateral ACL-Reconstructed Individuals (전방십자인대 수술이 시행되어진 슬관절과 정상 슬관절의 유효 모멘트암 (effective moment arm) 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • The purpose of this study is (a) to estimate effective moment arms of quadriceps forces and (b) to compare the $d_e$ between the ACL-reconstructed and uninjured knees from the same individual. One female (20 yrs old, 2 yrs post-op, hamstring tendon autograft) and two males (22 yrs old, 2 yrs post-op; 28 yrs old, 4 yrs post-op; Patellar tendon autografts for both). Sagittal view radiographs were obtained for 6-7 different angles $(range\;5^{\circ}-110^{\circ})$ from each knee. The do was determined by the method of Chow et al. (1999a). The results showed that the maximum de values ranged from 4.61 to 5.59cm and 4.59 to 4.89cm for the ACL-reconstructed and uninjured knees, respectively. The maximum $d_e$ occurred between $35^{\circ}\;and\;50^{\circ}\;and\;20^{\circ}\;and\;50^{\circ}$ for the ACL-reconstructed and uninjured knees, respectively. The minimum do values ranged from 4.12 to 4.35 cm and 3.12 to 3.63cm for the ACL-reconstructed and uninjured knees, respectively. The effective moment arm of the knee extensor affects the loads on knee ligaments during knee-extension exercises. Because apparent differences in the moment arm of the quadriceps in different participants, it is very important to use personalized knee joint geometry for the computation of knee joint force. In the present study, no noticeable bilateral difference was found in the male subjects. However, apparent bilateral differences in de were observed in the female subject. This suggests that the effects of ACL reconstruction surgery on patellar mechanism deserve further investigation.

Analysis of connecting joint anglle and moment in arm landing action in Sports Aerobics (스포츠에어로빅스 팔착지 동작의 연계관절 각도와 모멘트분석)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.311-325
    • /
    • 2003
  • A relation between the movement range of arms and arising moment has been studied to find out efficient movement range to minimize impact concerning arm landing in sports aerobics. Four male athletes who won top three in national-level sports aerobics competition were chosen for the experiment. They were allowed to jump in between two force platform so that the right hand and the right leg could land onto the front and rear force platform, respectively. The sampling frequency was 200 Hz. The main conclusions based on the analysis of the angle and joint moment parameters of wrist, elbow, and shoulder are as follows: 1. The wrist moment was small when its angle was small, indicating that the dorsi-flexion of the wrist joint offered a positive influence to reduce wrist moment. 2. The elbow angle increased as wrist angle decreased and vice versa. This means that the movement range of the wrist joint affects that of the elbow joint. The darsi-flexion of the wrist is the position to absorb the impact of the elbow effectively rather than to absorb the impact of the wrist itself. The impact is absorbed by the flexion of wrist joint rather than the wrist. 3. The degree of moment transfer of the shoulder joint, having absorbed the impact from the elbow and elbow joint, became dependent on the efficiency of the fore-joints impact absorption.

The elbow is the load-bearing joint during arm swing

  • Bokku Kang;Gu-Hee Jung;Erica Kholinne;In-Ho Jeon;Jae-Man Kwak
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • Background: Arm swing plays a role in gait by accommodating forward movement through trunk balance. This study evaluates the biomechanical characteristics of arm swing during gait. Methods: The study performed computational musculoskeletal modeling based on motion tracking in 15 participants without musculoskeletal or gait disorder. A three-dimensional (3D) motion tracking system using three Azure Kinect (Microsoft) modules was used to obtain information in the 3D location of shoulder and elbow joints. Computational modeling using AnyBody Modeling System was performed to calculate the joint moment and range of motion (ROM) during arm swing. Results: Mean ROM of the dominant elbow was 29.7°±10.2° and 14.2°±3.2° in flexion-extension and pronation-supination, respectively. Mean joint moment of the dominant elbow was 56.4±12.7 Nm, 25.6±5.2 Nm, and 19.8±4.6 Nm in flexion-extension, rotation, and abduction-adduction, respectively. Conclusions: The elbow bears the load created by gravity and muscle contracture in dynamic arm swing movement.

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

A Study on the Behavior of Human Right Arm under Impact Condition (외부 충격시 우측팔의 생체역학적 거동해석)

  • Chae, Je-Wook;Lee, Joon-Ho;Kim, Hyun-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.152-158
    • /
    • 2009
  • In this paper, the right arm was modelled by muscle-skeleton elements to obtain the behavior of right arm of human under impact condition, where physical and geometrical properties of human body such as Young's modulus, shear modulus, cross sectional area, length, density, moment of inertia and position were defined. Based on the numerical model of the right arm, the impact response of the right arm was obtained. By the comparison with the experimental results, the model of the right arm was verified.

Stress Analysis of Crank Shaft by Considering Bending and Twisting Moment (굽힘 및 비틀림모멘트를 고려한 크랭크축의 응력해석)

  • 이정윤;정주석
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.13-18
    • /
    • 1993
  • This paper an application method of crankshaft of four cylinder internal combustion engine for studying stress analysis of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Metrix Method was used, considering branched part and coordinate transformation part. Bending, twisting moment and stresses of crank shaft were investigated.

  • PDF

APPLICATION OF INVERSE DUNAMICS FOR HYBRID TRANSLATIONAL POSITION/FORCE CONTROL OF A FLEXIBLE ROBOT ARM

  • Sasaki, Minoru;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.595-599
    • /
    • 1989
  • A new simple method for controlling compliant motions of a flexible robot arm is presented. The method aims at controlling translational tip motion, force and moment by directly computing the base motion or torque. A numerical inversion of Laplace transform is used to obtain the results in the time domain. The results show the effectiveness of the method for the hybrid translational position/force control of a flexible robot arm.

  • PDF

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • Ardakani, Fateme Fotouhi;Vatankhah, Ramin;Sharifi, Mojtaba
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.653-663
    • /
    • 2018
  • Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.

Kinematic analysis of Ire hockey slap shot (아이스 하키 슬랩 샷(slap shot)의 운동학적 분석)

  • Moon, Gon-Sung;Park, Chong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.13-28
    • /
    • 2003
  • The purpose of this study was to analyze the kinematic characteristics of Ice hockey slap shot. The subjects of this study were four professional ice hockey players. The reflective markers were attached on the anatomical boundary line of body and the subjects were asked to perform the shot. Ariel Performance Analysis System was used to capture and digitize the shooting image, the data were analyzed by LabView 6i. The results were as fellows. 1. The period of the back swing phase was $0.542{\pm}0.062sec$, the down swing phase was $0.28{\pm}0.056sec$ and the total swing time was $0.825{\pm}0.017sec$ 2. The maximum linear velocity of the stick blade for x direction was shown after 7% of impact, for y, z direction were shown before 2%, 8% of Impact. 3. The maximum velocity of each segment for the left arm was $2.35{\pm}0.05m/s$ in the upper arm, $3.56{\pm}0.34m/s$ in the forearm, $4.75{\pm}0.67m/s$ in the hand. 4. The maximum velocity of each segment for the right arm was $4.67{\pm}0.43m/s$ in the upper arm, $7.22{\pm}0.69m/s$ in the forearm, $9.42{\pm}0.89m/s$ in the hand. 5. The angle of left elbow was generally flexed from the ready stance to the impact and was $82.26{\pm}3.45^{\circ}$ the moment of Impact. 6. The angle of the left shoulder was increased ut the down swing phase and was $78.74{\pm}4.78^{\circ}$ on the moment of impact. 7. The angle of the right shoulder was decreased in the down swing phase and increased before the impact. and the angle was $51.28{\pm}3.54^{\circ}$ on the moment of impact.