• Title/Summary/Keyword: Molybdenum silicide

Search Result 9, Processing Time 0.027 seconds

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • Gang, Jun-Gu;Na, Se-Gwon;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF

Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide (탄화 규소가 균일 분산된 규화 몰리브데넘계 복합재의 제조)

  • Choi, Won June;Park, Chun Woong;Kim, Young Do;Byun, Jong Min
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.402-407
    • /
    • 2018
  • Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.

Characteristics of Molybdenum Nitride Diffusion Barrier for Copper Metallization (Cu 금속배선을 위한 Molybdenum Nitride 확산 방지막 특성)

  • Lee, Jeong-Yeop;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.626-631
    • /
    • 1996
  • Reactive dc magnetron sputtering 법을 이용하여 증착한 molybdenum mitride 박막의 Cu 확산 방지막 특성을 조사하였다. Cu 확산 방지막으로서 molybdenum nitride 박막의 열적안정성을 관찰하기 위하여 molybdenum nitride 박막 위에 Cu를 evaporation 법으로 증착하고 진공 열처리하였다. Cu/r-Mo2N/si 구조는 $600^{\circ}C$, 30분간 열처리 시까지 안정하였다. 확산 방지막의 파괴는 $650^{\circ}C$, 30분간 열처리 시부터 격자 확산(lattice diffusion)이나 입계(grain boundary)과 결함(defect)을 통한 확산에 의해 나타나기 시작하였고, 이 때 molybdenum silicide과 copper silicide의 형성에 기인된 것으로 생각되었다. 열처리 이후 Cu/r-Mo2N/Si 사이의 상호반응이 증가하였다. 이는 Rutherford backscattering spectrometry, Auger electron spectroscopy 그리고 Nomarski microscopy 등의 분석을 통해 조사되었다.

  • PDF

Molybdenum and Cobalt Silicide Field Emitter Arrays

  • Lee, Jong-Duk;Shim, Byung-Chang;Park, Byung-Gook;Kwon, Sang-Jik
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • In order to improve both the level and the stability of electron emission, Mo and Co silicides were formed from Mo mono-layer and Ti/Co bi-layers on single crystal silicon field emitter arrays (FEAs), respectively. Using the slope of Fowler-Nordheim curve and tip radius measured from scanning electron microscopy (SEM), the effective work function of Mo and Co silicide FEAs were calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher device failure voltage, and 6.1 and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on vacuum level were almost the same in the range of $10^{-9}{\sim}10^{-6}$ torr. This result shows that silicide is robust in terms of anode current degradation due to the absorption of air molecules.

  • PDF

Behavior of Implanted Dopants and Formation of Molybdenum Siliclde by Composite Sputtering (Composite target으로 증착된 Mo-silicide의 형성 및 불순물의 거동)

  • Cho, Hyun-Choon;Paek, Su-Hyon;Choi, Jin-Seog;Hwang, Yu-Sang;Kim, Ho-Suk;Kim, Dong-Won;Shim, Tae-Earn;Jung, Jae-Kyoung;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.375-382
    • /
    • 1992
  • Molybdenum silicide films have been prepared by sputtering from a single composite MoS$i_2$ source on both P, B$F_2$respectively implanted (5${\times}10^{15}ions/cm^2$ single crystal and P implanted (5${\times}10^{15}ions/cm^2$) polycrystalline silicon substrates followed by rapid thermal annealing in the ambient of argon. The heat treatment temperatures have been varied in the range of 600-l20$0^{\circ}C$ for 20 seconds. The properties of Mo-silicide and the diffusion behaviors of dopant after the heat treatment are investigated using X-ray diffraction, scanning electron microscopy(SEM) , secondary ions mass spectrometry(SIMS), four-point probe and $\alpha-step.$ Annealing at 80$0^{\circ}C$ or higher resulted in conversion of the amorphous phase into predominantly MoS$i_2$and a lower sheet resistance. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into molybdenum silicide layers during annealing.

  • PDF

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF

MO-COMPOUNDS AS A DIFFUSION BARRIER BETWEEN Cu AND Si

  • Kim, Ji-Hyung;Lee, Yong-Hyuk;Kwon, Yong-Sung;Yeom, Geun-Young;Song, Jong-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.683-690
    • /
    • 1996
  • In this study, the diffusion barrier properties of $1000 \AA$ thick molybdenum compounds (Mo, Mo-N, $MoSi_2$, Mo-Si-N) were investigated using sheet resistance measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Rutherford backscattering spectrometry (RBS). Each barrier material was deposited by the dc magnetron sputtering, and annealed at 300-$800^{\circ}C$ for 30min in vacuum. Mo and $MoSi_2$ barrier were failed at low temperature due to Cu diffusion through grain bound-aries and defects of Mo thin film and the reaction of Cu with Si within $MoSi_2$ respectively. A failure temperature could be raised to $650^{\circ}C$-30min in the Mo barrier system and to $700^{\circ}C$-30min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the N, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It was found that Mo-Si-N is more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetration preventing Cu reaction with the substrate for 30min at a temperature higher than $650^{\circ}C$.

  • PDF

SiO2 Behavior of MoSi2 Powders Containing SiO2 Synthesized by SHS Method (자전연소합성법으로 제조된 SiO2 첨가된 MoSi2 분말 내에서의 SiO2의 거동 연구)

  • Rha, Sa-Kyun;Jeon, Min-Seok;Song, Jun-Kwang;Han, Dong-Bin;Jeong, Cheol-Weon;Kim, Sung-Soo;Lee, Youn-Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.559-564
    • /
    • 2011
  • In order to investigate the behavior of $SiO_2$ in the molybdenum silicide powders, crystal structure of these powders was measured by XRD, in addition, surface composition and surface phase (or chemical states) and microstructure were analysed by XPS and TEM, respectively. Mo-silicide powders containing $SiO_2$ were synthesized by SHS (Self-Propagating High-Temperature Synthesis) technique. In XRD result, according to increase of $SiO_2$ contents, the crystal structure for synthesized $MoSi_2$ powders was still typical $MoSi_2$ bct without any other phases. By XPS analysis, the surface of Mo and Si source powders was covered with $MoO_3$ and $SiO_2$, respectively, and the surface of synthesized $MoSi_2$ powder was also covered with $MoO_3$ and $SiO_2$, which were stable oxides at room temperature. However, according to increase of $SiO_2$ addition, $MoSi_2$ phase in XPS spectra decreased and $SiO_2$ phase increased relatively in synthesized $MoSi_2$ powders. From the results by XPS and XRD, we found that the existent $SiO_2$ has amorphous structure. In the microstructure, the small particulates of the synthesized products added $SiO_2$ agglomerated together to form larger clusters (from ~10 nm to ~1 ${\mu}m$). From TEM, XPS, and XRD results, we found that the out layer of agglomeration of synthesized $MoSi_2$ powder is surrounded by amorphous $SiO_2$.