• Title/Summary/Keyword: Molybdenum disilicide $(MoSi_2)$

Search Result 13, Processing Time 0.017 seconds

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 9. Studies on Impact Properties of the Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구: 9. 복합재료의 충격특성에 관한 연구)

  • 박수진;서민강;이재락
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • In this work, the effect of molybdenum disilicide(MoSi$_2$) content on the impact properties of carbon-carbon composites(C/C composites) was investigated in the presence of MoSi$_2$. The content of MoSi$_2$ was varied in 0, 4, 12 and 20 wt% on the basis of resin matrix for anti-oxidation properties of the composites under high temperature. As a result, the composites made with MoSi$_2$ resulted in an increase of interfacial adhesion between fibers and matrix, which could improve the impact properties of the composites. Especially, 12 wt% Mosi$_2$ composites showed the highest impact properties in the present system. This was probably due to the existence of brittle-to-ductile transition(BDT) properties of MoSi$_2$ in the vicinity of 90$0^{\circ}C$, resulting from increasing the interfacial adhesion force among fibers, filler, and matrix in the composites.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 7. Studies on Work of Adhesion and Fracture Toughness of Carbon-Carbon Composites (산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 7. 탄소/탄소 복합재료외 부착력과 파괴인성)

  • 박수진;서민강;이재락
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.435-440
    • /
    • 2001
  • The objective of this study was to examine the effect of oxidation inhibitor contents on the work of adhesion, fracture toughness, and impact strength of the unidirectional carbon-carbon composites (C/C composites). The molybdenum disilicide ($MoSi_2$) used as an oxidation inhibitor was impregnated with phenolic resins to improve the anti-oxidation properties of the composites in different concentrations of 4, 12 and 20 wt%. Based on Wilhelmy equation, the work of adhesion of C/C composites was calculated by contact angle methods. Fracture toughness and impact strength were pressured by three-point bending test for the critical intensity factor ($K_IC$) and Izod test method, respectively. As a result, the composites made with $MoSi_2$ resulted in an increasing of both fracture toughness and impact strength. Especially, the composites made with 12 wt% $MoSi_2$ content showed the highest value of London dispersive component, $W_A\;^L$, in work of adhesion, resulting from improving the interfacial adhesion force among fibers, filler, and matrix in this system.

  • PDF

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok;Jung, Sung-Hoon;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.492-498
    • /
    • 2017
  • A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.