• Title/Summary/Keyword: Molten pool

Search Result 105, Processing Time 0.039 seconds

Determination of the process variables for quality monitoring in direct rolling processes (직접압연 공정에서 품질계측을 위한 공정변수의 선정)

  • 배세철;박영준;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1364-1367
    • /
    • 1996
  • Recently, direct rolling process, called as strip casting process, has been interested in to save production cost by reducing forming processes. In direct rolling process, since a steel strip of thickness 1-5(mm) can be produced directly from molten metal, it can eliminate secondary hot rolling process. On the other hand, since many process variables are existed in this process and relation of these variables is very complex, it is difficult to realize the process design and the quality control. In this paper, as first step to overcome above difficulties, the quantitative relationship of the process variables affected to quality of the strip has been carried out through the numerical analysis. Also, we determined the process variable to monitor the quality in the direct rolling process. As a result, we show that the solidification final point, called as Nip point, was related directly to quality of the strip.

  • PDF

Characteristic Analysis and Selection of Process Parameters in Direct Rolling Processes (직접압연공정의 특성해석 및 공정변수 선정)

  • 박영준;조형석;이원호;강태욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.384-388
    • /
    • 1997
  • Recently,direct rolling process has been drawing increasing interests because production cost be greatly reduced by eliminating subsequent hot rolling processes. Such a process has been characterized to prosuce thin steel strip (thickness 1~5mm) directly from molten metal and to skip over the conventional hot rolling processes. However, since there are several process parameters, which affect the quality of product,and their relationship between the parametersare very complex,it is therefore very difficult to realize the process design and the quality control. To overcome these difficulties quantitative relationship between the parameters are investigated through a numerical analysis. Form these results, it is found that solidification final point is the most important paramter which is critical to quality of the strip. Also,the multiple regression model is obtianed to determine their relationship from the solidification final point and roll separating force which can be easily estimated

  • PDF

Analysis for the Coolability of the Reactor Cavity in a Korean 1000 MWe PWR Using MELCOR 1.8.3 Computer Code

  • Lee, Byung-Chul;Kim, Ju-Yeul;Chung, Chang-Hyun;Park, Soo-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.669-674
    • /
    • 1996
  • The analysis for the coolability of the reactor cavity in typical Korean 1000 MWe Nuclear Unit under severe accidents is performed using MELCOR 1.8.3 code. The key parameters molten core-concrete interaction(MCCI) such as melt temperature, concrete ablation history and gas generation are investigated. Total twenty cases are selected according to ejected debris fraction and coolant mass, The ablation rate of concrete decreases as mass of the melt decreases and coolant mass increases. Heat loss from molten pool to coolant is comparable to total decay heat, so concrete ablation is delayed until water is absent and crust begins to remove. Also, overpressurization due to non-condensible gases generated during corium and concrete interacts can cause to additional risk of containment failure. It is concluded that flooded reactor cavity condition is very important to minimize the cavity ablation and pressure load by non-condensible gases on containment.

  • PDF

A Study of Heat and Fluid Flow for GMA Welding Processes (GMA 용접 공정 중 열 유체에 관한 연구)

  • 김일수;박창언;권욱현;김수광
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.148-152
    • /
    • 1996
  • A transient two-dimensional (2D) model was developed for investigating the heat and fluid flow in old pools and determining velocity profile and temperature distribution for the Gas Metal Arc (GMA) welding process. The mathematical formulation deals with the driving farces (electromagnetic, buoyancy, surface tension and plasma drag forces) as well as energy exchange between the molten filler metal droplet and weld pools. A general thermofluid-mechanics computer program, PHOENICS, was employed to numerically solve the governing equation with the associated source terms. The results of computation have shown that the electromagnetic and surface tension farces as will as the molten filler metal droplet have major influence in shaping the weld pool geometry.

  • PDF

Stratified steam explosion energetics

  • Jo, HangJin;Wang, Jun;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.

Enhancement of critical heat flux with additive-manufactured heat-transfer surface

  • Tatsuya Kano;Rintaro Ono;Masahiro Furuya
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2474-2479
    • /
    • 2024
  • In-Vessel Retention (IVR) is a key technology to retain the molten core in the reactor vessel during severe accidents of Pressurized-water reactors (PWRs). In order to gain the safety margin of IVR, it is crucial to enhance the critical heat flux (CHF) of the reactor vessel, which is submerged in a water pool. To enhance the CHF, we have designed and additive-manufactured porous grid plates with a 3-D printer for design flexibility. We measured the CHF for the porous grid plate on the boiling heat transfer surface and found that the CHF was enhanced by 50 % more than that of the bare surface. The CHF enhanced more with a narrower grid pitch and a lower grid height. The visual observation study revealed that the vapor film was formed at the bottom of the grid plate.

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance (마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구)

  • Kim, Ill Soo;Lee, Jong Pyo;Lee, Ji Hye;Jung, Sung Myoung;Kim, Young Su;Chand, Reenal Ritesh;Park, Min Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.

A Study of the Effect of Magnetic Fields Using Welding Process (용접 공정에서 자기력의 효과에 대한 연구)

  • Cho, Hong Seok;Park, Ik Keun;Lee, Wooram
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.32-43
    • /
    • 2014
  • Welding and joining technology has become a core field. Therefore it is more widely applied to nonferrous metals, inorganic and polymeric materials. That is because the high performance, high function and diversification trend of materials used as industrial technology develops. In the laser welding process, STS 304 and SCP1-S were used as the base materials, the output density was fixed $7MW/cm^2$, the protective gas was argon(Ar) and the transfer rate was fixed 5 mm/sec. and it was progressed while the magnetic field is gradually increasing by 100 mT ranging 0 to 400 mT. The tensile test showed in average about 6 % tensile strength improvement in the case of the laser welding process using the magnetic fields. In the shielded metal arc welding process using SPHC only or the combination of SPHC+STS304 as base materials. The electric current was set at 80 Amperes and the protective gas used argon(Ar) the same as the laser welding process and the strength of magnetic fields. In the shielded metal arc welding process using the magnetic fields, the tensile tests showed about 5 % tensile strength improvement in the case of using SPHC only, 3 % tensile strength improvement in the case of using the combination of SPHC+ STS304. In comparing the results of numerical analysis to the results of experimental tests, it was revealed that the temperature, thermal stress distribution and the behavior of molten pool were similar to those of real tests. Consequently, it may be considered that the numerical assumption and the analytical model used in this study were reasonable.

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF