• Title/Summary/Keyword: Molten metal

Search Result 461, Processing Time 0.036 seconds

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

Development of SiC Composite Solder with Low CTE as Filling Material for Molten Metal TSV Filling (용융 금속 TSV 충전을 위한 저열팽창계수 SiC 복합 충전 솔더의 개발)

  • Ko, Young-Ki;Ko, Yong-Ho;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.68-73
    • /
    • 2014
  • Among through silicon via (TSV) technologies, for replacing Cu filling method, the method of molten solder filling has been proposed to reduce filling cost and filling time. However, because Sn alloy which has a high coefficient of thermal expansion (CTE) than Cu, CTE mismatch between Si and molten solder induced higher thermal stress than Cu filling method. This thermal stress can deteriorate reliability of TSV by forming defects like void, crack and so on. Therefore, we fabricated SiC composite filling material which had a low CTE for reducing thermal stress in TSV. To add SiC nano particles to molten solder, ball-typed SiC clusters, which were formed with Sn powders and SiC nano particles by ball mill process, put into molten Sn and then, nano particle-dispersed SiC composite filling material was produced. In the case of 1 wt.% of SiC particle, the CTE showed a lowest value which was a $14.8ppm/^{\circ}C$ and this value was lower than CTE of Cu. Up to 1 wt.% of SiC particle, Young's modulus increased as wt.% of SiC particle increased. And also, we observed cross-sectioned TSV which was filled with 1 wt.% of SiC particle and we confirmed a possibility of SiC composite material as a TSV filling material.

Mechanism of Tungsten Recovery from Spent Cemented Carbide by Molten Salt Electrodeposition

  • Hongxuan Xing;Zhen Li;Enrui Feng;Xiaomin Wang;Hongguang Kang;Yiyong Wang;Hui Jin;Jidong Li
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2023
  • The accumulation of spent carbide (YG8), not only pollutes the environment but also causes waste of tungsten, cobalt and other rare metal resources. To better address this issue, we proposed a combined electrochemical separation process of low-temperature aqueous solution and high-temperature molten salt for tungsten and cobalt. H2WO4 was obtained from spent carbide in an aqueous solution, and we calcined it to obtain WO3, which was used as a raw material to obtain tungsten by using molten salt electrodeposition. The influence of the current efficiency and the electrochemical behavior of the discharge precipitation of W(VI) were also studied. The calcination results showed that the morphology of WO3 was regular and there were no other impurities. The maximum current efficiency of 82.91% was achieved in a series of electrodeposition experiments. According to XRD and SEM analysis, the recovered product was high purity tungsten, which belongs to the simple cubic crystal system. In the W(VI) reduction mechanism experiments, the electrochemical process of W(VI) in NaCl-Na2WO4-WO3 molten salt was investigated using linear scanning voltammetry (LSV) and chronoamperometry in a three-electrode system. The LSV showed that W(VI) was reduced at the cathode in two steps and the electrode reaction was controlled by diffusion. The fitting results of chronoamperometry showed that the nucleation mechanism of W(VI) was an instantaneous nucleation mode, and the diffusion coefficient was 7.379×10-10 cm2·s-1.

Controlled Conversion of Sodium Metal From Nuclear Systems to Sodium Chloride

  • Herrmann, Steven;Zhao, Haiyan;Shi, Meng;Patterson, Michael
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.233-241
    • /
    • 2021
  • A series of three bench-scale experiments was performed to investigate the conversion of sodium metal to sodium chloride via reactions with non-metal and metal chlorides. Specifically, batches of molten sodium metal were separately contacted with ammonium chloride and ferrous chloride to form sodium chloride in both cases along with iron in the latter case. Additional ferrous chloride was added to two of the three batches to form low melting point consolidated mixtures of sodium chloride and ferrous chloride, whereas consolidation of a sodium-chloride product was performed in a separate batch. Samples of the products were characterized via X-ray diffraction to identify attendant compounds. The reaction of sodium metal with metered ammonium chloride particulate feeds proceeded without reaction excursions and produced pure colorless sodium chloride. The reaction of sodium metal with ferrous chloride yielded occasional reaction excursions as evidenced by temperature spikes and fuming ferrous chloride, producing a dark salt-metal mixture. This investigation into a method for controlled conversion of sodium metal to sodium chloride is particularly applicable to sodium containing elevated levels of radioactivity-including bond sodium from nuclear fuels-in remote-handled inert-atmosphere environments.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Cause Analysis Ignited at a Far Infrared Radiation Heater (원적외선 히터에서 출화된 화재의 원인분석)

  • Kim, Dong-Ook;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • This research studied about the cause analysis of fire that was occurred in far infrared rays heater to base on the fire examples. Fire of electric heater was apt to commit error that handled an over-heating accident by judged molten mark in heat ray. Molten mark which was attached in heat ray was appeared to the form of layer short circuit by other metal material, but other metal material was not found beside the ingredient of heat wire which was mixed to an alloy of Fe-Cr-Al according to result of ingredient distribution by SEM/EDX. Also, the result of overheating experiment by layer short circuit and overvoltage showed higher febrility than normal, but there was no possibility of fire occurrence. This paper will be contributed to science for cause analysis of electric fire through analyzing physical, chemical and flame features of burnout heater on the basis of diagnosis of fire that was happened in infrared rays heater.

A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li$_2$O Molten Salt (LiCl-Li$_2$O 용융염계에서 우라늄 산화물의 전기화학적 금속전환 반응 메카니즘에 관한 연구)

  • 오승철;허진목;서중석;박성원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.25-39
    • /
    • 2003
  • This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li$_2$O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li$_2$O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  • PDF

Investigation of molten fuel coolant interaction phenomena using real time X-ray imaging of simulated woods metal-water system

  • Acharya, Avinash Kumar;Sharma, Anil Kumar;Avinash, Ch.S.S.S.;Das, Sanjay Kumar;Gnanadhas, Lydia;Nashine, B.K.;Selvaraj, P.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1442-1450
    • /
    • 2017
  • In liquid metal fast breeder reactors, postulated failures of the plant protection system may lead to serious unprotected accidental consequences. Unprotected transients are generically categorized as transient overpower accidents and transient under cooling accidents. In both cases, core meltdown may occur and this can lead to a molten fuel coolant interaction (MFCI). The understanding of MFCI phenomena is essential for study of debris coolability and characteristics during post-accident heat removal. Sodium is used as coolant in liquid metal fast breeder reactors. Viewing inside sodium at elevated temperature is impossible because of its opaqueness. In the present study, a methodology to depict MFCI phenomena using a flat panel detector based imaging system (i.e., real time radiography) is brought out using a woods metal-water experimental facility which simulates the $UO_2-Na$ interaction. The developed imaging system can capture attributes of the MFCI process like jet breakup length, jet front velocity, fragmented particle size, and a profile of the debris bed using digital image processing methods like image filtering, segmentation, and edge detection. This paper describes the MFCI process and developed imaging methodology to capture MFCI attributes which are directly related to the safe aspects of a sodium fast reactor.