• Title/Summary/Keyword: Molten aluminum

Search Result 140, Processing Time 0.024 seconds

A Study on the Measurement of the Concentration and the Size Distribution of Inclusions in the Molten Aluminum (용융 알루미늄내에서 개재물의 크기분포 및 농도측정에 관한 연구)

  • An, Jeong;Moon, Kwang-Ho;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.62-74
    • /
    • 1994
  • The concentration and particle size distribution of non-metallic inclusions which suspended in the molten aluminum at $700^{\circ}C$ were measured by using LiMCA apparatus. The result revealed that the number of inclusions increased with increasing the applied current or decreasing the orifice diameter, while decreased with increasing the purity of aluminum. And also, it was found that the number of inclusions increased with increasing the amount of boron added to molten aluminum. This was found to be attributed to the formation of the inclusions of TiB and $V_3B_2$. It was investigated that the average concentration of inclusions in a constant volume of 20ml of molten aluminum was increased in the order of pure molten aluminum, molten aluminum containing 20ppm of boron and molten aluminum used repeatly in the experimental casting in this study.

  • PDF

Fabrication of Carbon Fiber/Aluminum Preforms using Cylindrical Sputtering System (원통형 스퍼터링 장치를 이용한 탄소섬유/알루미늄 프리폼의 제작)

  • Kim, Y.C.;Han, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to prepare a high-strength Fiberglass Reinforced Metal (FRM). Aluminum covering over carbon fibers (CF) was made to increase their wettability to molten aluminum. A cylindrical sputtering apparatus was used for the covering. One tow of carbon fibers was placed along the central axis of the cylindrical target. Aluminum was uniformly coated around the carbon fiber tow. But in case of CF without sizing treatment, aluminum spread into the inside of the tow. Preforms of carbon fiber/aluminum composite were made by impregnating carbon fiber with molten aluminum. Contact angle of molten aluminum to the aluminum-coated carbon fiber was about $30^{\circ}$. The fractured section of preform was observed by SEM, which showed that molten aluminum wetted the outer part of the tow well but had not penetrated into the center, and that adhesion between CF and aluminum matrix was in good condition.

A Study on the Design of a Rotational Force Generator for Molten Metal (용탕 회전력 생성장치의 설계에 관한 연구)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.493-501
    • /
    • 2012
  • A rotational force generator for molten metal is developed using a linear motor design technology. Also, the developed device is applied to reproduce aluminum scraps and easy to control the rotate, stop, and forward and reverse rotation of molten metal. In addition, the developed device improves the melting speed and reproduction rate about 250 (%) and 96-99 (%), respectively, compared to the conventional handmade methods. Because it generates almost no dusts, it can improve working environments in a factory. Also, it has no losses in energy because it directly melts scraps. The device generates small amounts of the loss in refractory materials and aluminum caused by its oxidation because the molten metal is continuously rotated in which the loss and oxidized aluminum are the problems in the conventional melting and holding furnaces. Thus, it is possible to extend the life of furnaces and to produce high quality aluminum products.

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

An Implementation of an Integrated Degasing System for Aluminum Molten Metal in Continuous Casting (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle, pollution due to producing a lot of toxic gases like chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals, loss of metals, and decreasing the life of refractory materials. In order to solve these problems, this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the existing methods and prevented environmental pollution with smokeless, odorless, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The method developed in this study decreases the molten metal processing and settling time compared to the existing methods and improves the workers' health, safety, and environment because there is no pollution in processes.

A Study on Corrosion Behavior of the Clay-Bonded Kaolin Chamotte by Molten Aluminum (용융 알루미늄에 의한 점토결합 카올린 샤모트의 침식에 관한 연구)

  • 박정현;이승주
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.188-196
    • /
    • 1980
  • To investigate the corrosion behavior of the clay-bonded kaolin chamotte by molten aluminum, the mixture of 20 wt% fire clay and 80 wt% kaolin chamotte was prepared and fired in the temperature range 900~120$0^{\circ}C$. The specimens fired at each temperature were reacted with molten aluminum at 90$0^{\circ}C$. The results obtained in this experiment are as followed. 1) It was confirmed through X-ray diffraction analysis that the clay-bonded kaolin chamotte exposed to molten aluminum suffered penetration by the reaction of aluminum with silica forming alumina and metallic silicon. 2) Penetration was independent whether the silica existed as free or one component of mullite. 3) Penetration of the specimen fired at 90$0^{\circ}C$ was negligible while the others fired above 100$0^{\circ}C$ showed remarkable penetration. 4) Penetration rate at 90$0^{\circ}C$ was parabolically increased with the holding time as in the case of metal oxidation.

  • PDF

Effect of Aluminum, Manganese, and Zirconium on the Content of Nickel in Molten Magnesium (마그네슘용탕의 니켈 함량에 미치는 알루미늄, 망간 및 지르코늄의 영향)

  • Jeong, Dae-Yeong;Moon, Young-Hoon;Moon, Byoung-Gi;Park, Won-Wook;Sohn, Keun-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Variations of nickel contents and microstructures in molten magnesium alloys on the addition of aluminum, zirconium, and manganese have been investigated. Specimens were prepared by melting under $SF_6$ and $CO_2$ atmosphere and casting into a disc of 29 mm diameter with 7~10 mm thickness from the melt acquired at the top of crucible. Before casting, the molten metal was stirred for 3 minutes after each addition of alloying elements and maintained for 30 minutes for settling down. Results showed that zirconium did not significantly affect the content of nickel while aluminum remarkably reduced it by forming $Al_3Ni_2$ phase. When manganese are added to Mg-1wt%Ni alloy along with aluminum, both elements remarkably reduced the content of nickel. The addition of 1.5 wt% manganese to Mg-1wt%Ni alloy containing aluminum further reduced the content of nickel by more than 30%, during which an additional intermetallic phase $Al_{10}Mn_3Ni$ was precipitated in the molten magnesium.

Development of a monolithic apparatus for degasing aluminum continuous casting molten metal (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • 이용중;김태원;김기대;류재엽;이형우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.145-149
    • /
    • 2004
  • It is necessary for managing a perfect process for degasing aluminum molten metal according to the increase of a grade of aluminum and its alloy products. There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle. pollution due to the producing a lot of toxic gases like chlorine and fluoride gas. irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals. loss of metals, and decreasing the life of refractory materials. In order to solve these problems. this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the exist ing methods and prevented environmental pollution wi th smokeless. odor less, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The developed method can significantly reduce product faults that are caused by the production of gas and oxidation because it uses a preprocessed molten metal with chemicals. In addition. the amount of the produced sludge can also be reduced by 60-80% maximum compared with the existing methods. Then. it makes it possible to minimize the loss of metals. Moreover. the molten metal processing and settling time is also shortened by comparing it with the existing methods that are applied by using chemicals. In addition, it does much to improve the workers' health, safety and environment because there is no pollution. The improvement of productivity and prevent ion effects of disaster from the results of the development can be summarized as follows. It will contribute to the process rationalization because it does not have any unnecessary processes that the molten metal will be moved to an agitator by using a ladle and returned to process for degasing like the existing process due to the monolithic configuration. There are no floating impurities due to the oxidation caused by the contact with the air as same as the existing process. In addition. it can protect the blending of precipitation impurities. Because it has a monolithic configuration. it can avoid the use of additional energy to compensate the temperature decreasing about 60t that is caused by the moving of molten metal. It is not necessary to invest an extra facilities in order to discharge the gas generated from a degasing process by using an agitator. The working environment can be improved by the hospitable air in the factory because the molten metal is almost not exposed in the interior of the area.

  • PDF

Performance Evaluation of Molten Metal Splash Protective Fabrics (용융금속 방호보호복소재의 성능수준 평가)

  • Park, Pyoung-Kyu;Jin, Lu;Yoon, Kee-Jong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.55-61
    • /
    • 2018
  • In this study, the molten metal protective performance of various molten metal protective clothing materials such as herringbone twill laminated aluminium foils, oxydized-polyacrylonitrile laminated with aluminium deposited polyethylene terephthalate films, twill fabric laminated with aluminium deposited polyethylene terephthalate films and nonwoven laminated with aluminum deposited polyethylene terephthalate films, were evaluated according to modified EN ISO 9185. The results showed that the molten metal protective performance of tested samples improved with the increase in fabric structure density, weight and thickness. In addition the effect of the thickness of aluminum foil on the molten metal protective performance is not significant. It was found the fabric is more important in the molten metal splash protective clothing.

Effects of Metal Mg on Replacement Reaction of Molten Al for Fabrication of $Al_2$O$_3$//Al Composites (Al$_2$O$_3$/Al 복합체 제조시 용융 알루미늄의 치환반응에 미치는 금속 마그네슘의 영향)

  • 정두화;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.23-32
    • /
    • 1998
  • Al2O3/Al composites were produced by immersing the sintered silica preform in molten aluminum which contained magnesium as impurity. Three distinct regions existed in the penetration behavior of molten me-tal with changing the reaction temperature. These regions are denoted as low temperature regime(75$0^{\circ}C$-85$0^{\circ}C$) intermediate regime(90$0^{\circ}C$-95$0^{\circ}C$) and high temperature regime(100$0^{\circ}C$$\leq$) In the low temperature regime the penetration speed of molten aluminum increased with increasing reaction temperature whereas it decreased in the intermediate regime due to the phase transition of alumina formed by displacement reac-tion. In the high temperature regime the penetration speed of molten aluminum was the highest at 100$0^{\circ}C$ which was 3.6 mm/hr But above 105$0^{\circ}C$ molten aluminum did not penetrate into the silica preform because of the formation of a dense spinel layer at the preform surface by magnesium in molten Al.

  • PDF