• Title/Summary/Keyword: Molten LiCl-KCl eutectic

Search Result 28, Processing Time 0.025 seconds

Electrochemical Impedance Spectroscopy and Cyclic Voltammetry Methods for Monitoring SmCl3 Concentration in Molten Eutectic LiCl-KCl

  • Shaltry, Michael R.;Allahar, Kerry N.;Butt, Darryl P.;Simpson, Michael F.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • Molten salt solutions consisting of eutectic LiCl-KCl and concentrations of samarium chloride (0.5 to 3.0 wt%) at 500℃ were analyzed using both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV technique gave the average diffusion coefficient for Sm3+ over the concentration range. Equipped with Sm3+ diffusion coefficient, the Randles-Sevcik equation predicted Sm3+ concentration values that agree with the given experimental values. From CV measurements; the anodic, cathodic, and half-peak potentials were identified and subsequently used as a parameter to acquire EIS spectra. A six-element Voigt model was used to model the EIS data in terms of resistance-time constant pairs. The lowest resistances were observed at the half-peak potential with the associated resistance-time constant pairs characterizing the reversible reaction between Sm3+ and Sm2+. By extrapolation, the Voigt model estimated the polarization resistance and established a polarization resistance-concentration relationship.

Precipitation of Rare Earth Chlorides in a LiC-KCl Eutectic Molten Salt (LiCl-KCl 공융염 내에서 희토류염화물들의 침전)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kim, Eung-Ho;Kim, In-Tae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.361-365
    • /
    • 2007
  • The precipitation reaction of some rare earth chlorides ($Ce/Nd/GdCl_3$) in a LiCl-KCl molten salt has been carried out by reaction with oxygen. Identification of rare earth precipitates by reaction with oxygen and effects of oxygen sparging time (max. 420 min) and molten salt temperature ($450{\sim}750^{\circ}C$) on conversion were investigated. In this study, regardless of the oxygen sparging time and the molten salt temperature, oxychlorides (REOCl) for $NdCl_3$ and $GdCl_3$, and an oxide ($REO_2$) for $CeCl_3$ are formed as a precipitate, which are identical with the estimation results of Gibbs free energy of reaction (${\Delta}G_r$). The conversion of rare-earth chlorides into insoluble precipitates was described by using a conversion ratio. The conversion ratio increased exponentially with the oxygen sparging time and finally showed asymptotic value, over 0.999 at $750^{\circ}C$ of the molten salt temperature and over 300 min of sparging time conditions. The conversion ratios were increased with the molten salt temperature. In case of $CeCl_3$, when the sparging time exceed 60 min, the values of the conversion ratio were nearly constant over 0.999 in all experimental temperature conditions.

Electrochemical Behavior of UCl3 and GdCl3 in LiCl-KCl Molten Salt (LiCl-KCl 고온 용융염 내 UCl3 및 GdCl3의 전기화학적 거동 연구)

  • Min, Seul-Ki;Bae, Sang-Eun;Park, Yong-Joon;Song, Kyu-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.276-281
    • /
    • 2009
  • Electrochemical behaviors of $U^{3+}$ and $Gd^{3+}$ were investigated in LiCl-KCl eutectic molten salt by using various electrochemical techniques. The electrodeposition and dissolution currents for uranium show the maximum at -1.51V and -1.35V, respectively while, for gadolinium,at -2.15V and -1.9V, respectively. In case of LiCl-KCl molten salt containing both of $U^{3+}$ and $Gd^{3+}$, the peak potential of electrodeposition of gadolinium shifts to more positive potential than in the solution without $U^{3+}$. The potentials in chronopotentiometric data suddenly dropped to negative value as soon as the reduction currents were applied and became constant at the potential around which the $U^{3+}$ and $Gd^{3+}$ are electrodeposited. The results of normal pulse voltammetry (NPV) and square wave voltammetry show that those methods can be used to qualitatively analyze the elements in the melts. Especially, the differentiation of NPV result was found to be useful for the separation of the peaks of which potentials are close each other.

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita;Chandra, Manish;Maji, S.;Venkatesh, P.;Annapoorani, S.;Jain, Ashish
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.279-291
    • /
    • 2022
  • In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.

Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K

  • Zhitkov, Alexander;Potapov, Alexei;Karimov, Kirill;Shishkin, Vladimir;Dedyukhin, Alexander;Zaykov, Yury
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.123-134
    • /
    • 2020
  • The interaction between UN and CdCl2 in the LiCl-KCl molten eutectic was studied at 773 K. The reaction was controlled by sampling the melt, as well as by analysis of the resulting precipitate. The process was shown to proceed according to several parallel reactions. The summary reaction was determined to have two stages: a fast one and a slow one. The 19-53% UN → UCl3 conversion was obtained for the molar ratio of CdCl2/UN = 1.22-14.9. The rest of UN converts into the precipitate of complex composition (UNCl + U2N3 + U4N7 + UN2). The increase in the CdCl2/UN molar ratio from 1.22 to 14.9 resulted in the decrease in duration of the first "fast" stage of the process from 18 h to 1 h.

Water Sorption/Desorption Characteristics of Eutectic LiCl-KCl Salt-Occluded Zeolites

  • Harward, Allison;Gardner, Levi;Oldham, Claire M. Decker;Carlson, Krista;Yoo, Tae-Sic;Fredrickson, Guy;Patterson, Michael;Simpson, Michael F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.259-268
    • /
    • 2022
  • Molten salt consisting primarily of eutectic LiCl-KCl is currently being used in electrorefiners in the Fuel Conditioning Facility at Idaho National Laboratory. Options are currently being evaluated for storing this salt outside of the argon atmosphere hot cell. The hygroscopic nature of eutectic LiCl-KCl makes is susceptible to deliquescence in air followed by extreme corrosion of metallic cannisters. In this study, the effect of occluding the salt into a zeolite on water sorption/desorption was tested. Two zeolites were investigated: Na-Y and zeolite 4A. Na-Y was ineffective at occluding a high percentage of the salt at either 10 or 20wt% loading. Zeolite-4A was effective at occluding the salt with high efficiency at both loading levels. Weight gain in salt occluded zeolite-4A (SOZ) from water sorption at 20% relative humidity and 40℃ was 17wt% for 10% SOZ and 10wt% for 20% SOZ. In both cases, neither deliquescence nor corrosion occurred over a period of 31 days. After hydration, most of the water could be driven off by heating the hydrated salt occluded zeolite to 530℃. However, some HCl forms during dehydration due to salt hydrolysis. Over a wide range of temperatures (320-700℃) and ramp rates (5, 10, and 20℃ min-1), HCl formation was no more than 0.6% of the Cl- in the original salt.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.