• Title/Summary/Keyword: Molecule Docking

Search Result 35, Processing Time 0.02 seconds

Recent Development of Search Algorithm on Small Molecule Docking (소분자 도킹에서의 탐색알고리듬의 현황)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF

Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations

  • Choi, Young-Jin;Kim, Dong-Wook;Park, Hyung-Woo;Hwang, Sun-Tae;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.769-775
    • /
    • 2005
  • An efficiency of Monte Carlo (MC) docking simulations was examined for the prediction of chiral discrimination by cyclodextrins. Docking simulations were performed with various computational parameters for the chiral discrimination of a series of 17 enantiomers by $\beta$-cyclodextrin ($\beta$-CD) or by 6-amino-6-deoxy-$\beta$-cyclodextrin (am-$\beta$-CD). A total of 30 sets of enantiomeric complexes were tested to find the optimal simulation parameters for accurate predictions. Rigid-body MC docking simulations gave more accurate predictions than flexible docking simulations. The accuracy was also affected by both the simulation temperature and the kind of force field. The prediction rate of chiral preference was improved by as much as 76.7% when rigid-body MC docking simulations were performed at low-temperatures (100 K) with a sugar22 parameter set in the CHARMM force field. Our approach for MC docking simulations suggested that the conformational rigidity of both the host and guest molecule, due to either the low-temperature or rigid-body docking condition, contributed greatly to the prediction of chiral discrimination.

Designing Inhibitor against Phospholipases A2 Enzyme through Inslico-Molecular Docking Studies

  • Ganapathy, Jagadeesan;Govindhan, Suresh;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.159-165
    • /
    • 2014
  • Pyrazole, hydroxyimino, aldehyde and isoxazole derivatives exhibit a broad spectrum of biological activities such as antimicrobial, anti-inflammatory and antitumor activities. With growing application on their synthesis and bioactivity, chemists and biologists in recent years have considerable attention on the research of these derivatives. In the view of potential importance of these derivatives, we have crystallized few of the derivatives and its report has been published. The present study focuses on docking studies of these derivatives against Phospholipases $A_2$ enzyme. This enzymes has implicated as potential targets for anti-inflammatory drug design. co-crystal structure (PDB ID: 1POE) of $PLA_2$ deposited in Protein Data Bank has been retrieved for docking analysis. Docking studies using Schrodinger's GLIDE reveals that these derivatives shows better binding energy and score in the defined active site. These results may provide a guiding role to design a lead molecule which may reduce inflamation.

Design of Novel Ras Farnesyltransferase Inhibitors Based on Virtual Screening and Docking Studies

  • Jung, Kang-Rae;Park, Hyung-Yeon;Kim, Chan-Kyung;Lee, Bon-Su
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.175.2-175.2
    • /
    • 2003
  • Inhibition of the protein-modifying enzyme farnesyltransferase is considered as a major emerging strategy in cancer therapy because of the involvement of farnesylated proteins in oncogensis. We studied the structure-activity relationship of a novel class of CAAX-peptidomimetic farnesyltransferase inhibitors based on the benzophenone scaffold. FlexX docking of inhibitors confirmed reasonable fit of the molecule into the peptide binding site of farnesyltransferase. We also performed a virtual screening with LeadQuest chemical library databases to idenfity novel inhibitors of farnesyltransferase. (omitted)

  • PDF

Virtual screening, molecular docking studies and DFT calculations on JNK3

  • Priya, dharshini;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.179-186
    • /
    • 2022
  • The c-Jun N-terminal kinase (JNK3) play major role in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, cerebral ischemia and other Central Nervous System disorders. Since JNK3 is primarily stated in the brain and stimulated by stress-stimuli, this situation is conceivable that inhibiting JNK3 could be a possible treatment for the mechanisms underlying neurodegenerative diseases. In this study drugs from Zinc15 database were screened to identify the JNK3 inhibitors by Molecular docking and Density functional theory approach. Molecular docking was done by Autodock vina and the ligands were selected based on the binding affinity. Our results identified top ten novel ligands as potential inhibitors against JNK3. Molecular docking revealed that Venetoclax, Fosaprepitant and Avapritinib exhibited better binding affinity and interacting with proposed binding site residues of JNK3. Density functional theory was used to compute the values for energy gap, lowest unoccupied molecular orbital (LUMO), and highest occupied molecular orbital (HOMO). The results of Density functional theory study showed that Venetoclax, Fosaprepitant and Avapritinib serves as a lead compound for the development of JNK3 small molecule inhibitors.

3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor

  • Park, Joon-Ho;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1241-1248
    • /
    • 2011
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) between new thiosemicarbazone analogues (1-31) as a substrate molecule and their inhibitory activity against tyrosinase as a receptor were performed and discussed quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. According to the optimized CoMSIA 2 model obtained from the above procedure, inhibitory activities were mainly dependent upon H-bond acceptor favored field (36.5%) of substrate molecules. The optimized CoMSIA 2 model, with the sensitivity of the perturbation and the prediction, produced by a progressive scrambling analysis was not dependent on chance correlation. From molecular docking studies, it is supposed that the inhibitory activation of the substrate molecules against tyrosinase (PDB code: 1WX2) would not take place via uncompetitive inhibition forming a chelate between copper atoms in the active site of tyrosinase and thiosemicarbazone moieties of the substrate molecules, but via competitive inhibition based on H-bonding.

Drug Designing for Biologically Important Organic Compound against COX-2 Enzyme: A Computational Approach

  • Sharmila, P.;Malathy, P.;Jagadeesan, G.;Gunasekaran, K.;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.204-208
    • /
    • 2015
  • Pyrazole, ${\beta}$-lactam, salicidine, pyren and oxazole derivatives exhibit a broad spectrum of biological activities such as antimicrobial, anti-inflammatory and antitumor activities. With growing application on their synthesis and bioactivity, chemists and biologists in recent years have considerable attention on the research of these derivatives. In the view of potential importance of these derivatives, we have crystallized few of the derivatives and its report has been published. The present study focuses on docking studies of these derivatives against COX-2 enzyme. Docking studies using Schrodinger's GLIDE reveals that these derivatives shows better binding energy and score in the defined active site. These results may provide a guiding role to design a lead molecule which may reduce inflamation.

Computational Analysis of Human Chemokine Receptor Type 6

  • Sridharan, Sindhiya;Saifullah, Ayesha Zainab;Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

Recent Development of Scoring Functions on Small Molecular Docking (소분자 도킹에서의 평가함수의 개발 동향)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2010
  • Molecular docking is a critical event which mostly forms Van der waals complex in molecular recognition. Since the majority of developed drugs are small molecules, docking them into proteins has been a prime concern in drug discovery community. Since the binding pose space is too vast to cover completely, many search algorithms such as genetic algorithm, Monte Carlo, simulated annealing, distance geometry have been developed. Proper evaluation of the quality of binding is an essential problem. Scoring functions derived from force fields handle the ligand binding prediction with the use of potential energies and sometimes in combination with solvation and entropy contributions. Knowledge-based scoring functions are based on atom pair potentials derived from structural databases. Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities (e.g. PME). Empirical scoring functions are derived from training sets of protein-ligand complexes with determined affinity data. Because non of any single scoring function performs generally better than others, some other approaches have been tried. Although numerous scoring functions have been developed to locate the correct binding poses, it still remains a major hurdle to derive an accurate scoring function for general targets. Recently, consensus scoring functions and target specific scoring functions have been studied to overcome the current limitations.

A Comparative Study on the Chemicostructural Characteristics of Ecdysteroids (Ecdysteroid 화합물들의 화학구조 특성에 대한 비교연구)

  • Hwang, Gab-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.351-359
    • /
    • 2012
  • Objectives: This study was conducted in order to investigate the specific correlation between physicochemical properties and bioactivity in ecdysteroids found in living organisms. Methods: The examined steroidal compounds were classified into three groups according to their relevance to ecdysone activity. Each compound molecule was completely drawn to automatically calculate its physicochemical parameters and docked against 20-hydroxyecdysone to calculate the total distance. Electronic charge distribution was also observed for each molecule. All procedures were conducted using a computational chemistry program. Results: Ecdysone agonists showed different ranges of parameter values, such as log P, hydrophilic-lipophilic balance (HLB), solubility parameter (SP), hydrophilic surface (HPS), hydrogen bond (HB) and Kappa 2, when compared with antagonists and steroids without ecdysone activity. They also showed a similar electronic charge distribution that is significantly different from the electron charge distribution of antagonists and steroids without ecdysone activity. The total distance values of agonists, estimated by docking them with 20-hydroxyecdysone, were relatively small but showed no correlation with binding affinity with receptor ligand. Conclusions: These results suggest that physicochemical properties such as steric and electronic effects, hydrophobicity and hydrogen bonding may operate in combination to determine the binding activity of ecdysteroids to the receptor protein.