• Title/Summary/Keyword: Molecular weight increase

Search Result 595, Processing Time 0.031 seconds

MWD of Fractionated Polystyrene in Ultrasound Induced High Pressure Reactor (초음파가 조사된 고압반응기에서 분획된 Polystyrene의 분자량 분포특성)

  • Kim, H.H.;Lee, S.B.;Hong, I.K.
    • Elastomers and Composites
    • /
    • v.32 no.3
    • /
    • pp.173-178
    • /
    • 1997
  • In this study, the ultrasonic irradiation in elevated pressure was used to alter the molecular weight and MWD of polystyrene. The high pressure reactor was filled with 0.5w/v% polystyrene solution, and then it was pressurized from 500psi to 4000psi. The ultrasound was irradiated in 10 minutes at each pressure, and the extract was collected and analyzed by GPC. Molecular weight distribution was predicted by log-normal and Schulz distribution function. The average molecular weight and polydispersity of polystyrene were decreased, as the pressure applied during the ultrasonic irradiation was increase. It was able to fractionate polymer material and control polydispersity by adjusting pressure in the ultrasonic irradiation.

  • PDF

The Effect of Molecular Weight on the Gelation Behavior of Regenerated Silk Solutions

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.183-186
    • /
    • 2011
  • The various molecular weight (MW) regenerated silk fibroins were prepared with different dissolution condition and the effect of MW on the gelation behavior of regenerated aqueous silk fibroin (SF) solution was investigated. The result of gelation time measurement indicated that the gelation of SF aqueous solution was accelerated by the increase of MW and SF concentration. When formic acid was added in SF aqueous solution, the gelation time of SFL and SFC30 aqueous solution showed a significant decreaseat 0.03% formic acid addition. In case of the lowest MW sample, SFC180, SF molecules became aggregated and precipitated without gelation after 28 days storage time. These findings indicate that MW control of SF can be utilized to control the gelation time of SF aqueous solution.

Ultrasound Energy Effect as Initiator of Polystyrene Latex Polymerization (Polystyrene Latex 제조공정에서 초음파 에너지의 개시효과)

  • Lee, Seung-Bum;Kim, Won-Il;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.31 no.3
    • /
    • pp.175-182
    • /
    • 1996
  • Polymer latices, prepared from the emulsion polymerization of vinyl monomer compounds, are widely used for many industrial applications. Included among these are uses in paints, adhesives, flocculants, and heavy-duty plastics as well as their original use in synthetic rubber compounds. The emulsion polymerization process with chemical initiator has chemical disadvantage such as removal of initiator which was left after polymerization. In this study, polystyrene latex was prepared by using ultrasonic irradiation which generate the free radical, and then it was analyzed by GPC. Reaction temperature hardly have an effect on average molecular weight. Average molecular weight is increased by increasing amount of surfactant, i.e. SDS, but polydispersity is decreased. After 90 minutes of reaction time, increase and decrease of average molecular weight Is repeated. It is proposed that monodisperse polymer is obtained by controlling ultrasonic irradiation time and surfactant concentration.

  • PDF

Experimental Study on Drag Reduction Effect of PEO in Turbulent Flow (난류유동에서 PEO가 마찰저항 감소효과에 미치는 영향에 대한 실험적 연구)

  • Chun, W.G.;Kim, S.;Lee, B.A.;Choi, H.J.;Kim, C.A.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • As polymer added in flow, the phenomenon of drag reduction effect was found by many experiments and studies. We divided polymer into three molecular weight($2{\times}10^5,\;4{\times}10^5,\;5{\times}10^5$) and into four concentration(1, 5, 10, 20wppm), then we measured the drag reduction effect in the range Reynolds Number with $30000{\sim}60000$. Finally we found that the most effect drag reduction was that molecular weight is $2{\times}10^5$ with 10wppm concentration. Then the concentration was according to PEO molecular weight, and in general DR increase according to Reynolds Number.

  • PDF

Hard Coating Materials Using Copolymers of 2,5-dichlorobenzophenone and 1,4-dichlorobenzene

  • Shin, Min Jae
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.661-665
    • /
    • 2022
  • In this study, 2,5-dichlorobenzophenone was synthesized as a monomer using 1,4-dichlorbenzene, and subsequently, copolymers of benzoyl-p-phenylene and p-phenylene were prepared. The average molecular weight was improved using the low-molecular-weight polymer cutting method. The average molecular weight and glass transition temperature of the synthesized polymers were estimated. The as-prepared polymer was used as a hard coating material, and the coating was conducted on a poly(methyl methacrylate) plate. Furthermore, physical properties of the coatings, such as pencil hardness, adhesive strength, and abrasion resistance, were estimated. As the amount of p-phenylene in the copolymer increased, pencil hardness and abrasion resistance improved. The amount of p-phenylene in the copolymer can be increased to 30 mol% in order to increase the hardness of the coating, and the adhesive strength was insufficient for the copolymers with p-phenylene ratio greater than 35 mol%.

Evaluation of Estrogenic Effects of Phthalate Analogues Using in vitro and in vivo Screening Assays

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Phthalate analogues are a plasticizer and solvent used in industry. Phthalates were classified in the category of "suspected" endocrine disruptors. The purpose of our study was to screen and elucidate the endocrine disrupting activity of seven phthalate analogues. E-screen assay was performed in MCF-7 human breast cancer cells with seven phthalate analogues. In this cell proliferation assay, benzyl butyl phthalate (BBP) and dibutyl phthalate (DBP) showed high estrogenic activity. Their relative proliferation efficiencies (RPE) were 109 and 106%, respectively. In vitro estrogen receptor (ER) binding assay, BBP, di-n-octyl phthalate (DOP) and dinonyl phthalate (DNP) showed weak relative binding affinity (RBA: 0.02%) compared to $17{\beta}-estradiol\;(E2)$ (RBA: 100%). In uterotrophic assay, E2 produced a significant increase, whereas four tested phthalate analogues had potential estrogenic effects in vitro did not increased in uterus weight in immature rats. From these results, we demonstrated that phthalate analogues exhibit weak estrogenic activity in vitro assays at high concentrations. Although phthalates induced an increase in MCF-7 cell proliferation by an estrogenic effect, they could not induce a uterus weight increase in vivo. From these, we may suggest that these phthalate analogues are easily metabolized to inactive forms in vivo. Further investigation in other in vitro and in vivo experimental systems might be required.

Control of Polyaniline Molecular Weight Based on p-aminodiphenylamine (p-aminodiphenylamine을 이용한 폴리아닐린 분자량 조절)

  • Hong Jang-Hoo;Jeon, Je Yeoul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • The ratio of aniline dimer (p-aminodiphenylamine), which is a nucleation site of chain growth in a chemical polymerization of aniline monomer, to aniline monomer was controlled to synthesize polyaniline with the molecular weight ($M_w$) between 10000 and 20000 g/mol. The result of OCP measurement showed that the reaction rate of polymerization was increased as the mole ratio of dimer was increased. The increase in the molar ratio of dimer resulted in the shift of absorption wavelength of polyaniline to the short wavelength region on measurement of UV/Vis and the decrease of molecular weight on the measurement of GPC.

Effects of Molecular Weight and Chitosan Concentration on GABA (${\gamma}$-Aminobutyric Acid) Contents of Germinated Brown Rice (키토산의 분자량과 농도에 따른 발아현미내 GABA함량증진 효과)

  • Ko, Jung-A;Kim, Kyoung-Ok;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.688-692
    • /
    • 2010
  • The aim of this study was to investigate the effects of molecular weight and concentrations of chitosan on the germination of brown rice. Brown rice was germinated at $30^{\circ}C$ for three days in various chitosan solutions. The germination rate of the brown rice increased with increasing concentrations of chitosan solution, and was higher in the chitosan solution than in water. GABA content increased with increasing germination time and chitosan solution concentration. As the molecular weight of the chitosan decreased, germination rate and GABA content increased in the brown rice. The GABA content of germinated brown rice using low molecular weight chitosan A in a 100 ppm solution was 5145.5 nmole/g. This is approximately a five times higher value than that of the water-germinated brown rice. Texture properties were enhanced in all the germinated brown rice samples in chitosan solution compared to the brown rice germinated in water. These results indicate that chitosan solution treatment can increase germination rate and GABA synthesis activity in brown rice during germination, and can also improve the texture properties of brown rice.

Effect of γ-Irradiation on the Molecular Properties of Bovine Serum Albumin and β-Lcatoglobulin

  • Cho, Yong-Sik;Song, Kyung-Bin
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2000
  • To elucidate the effect of oxygen radicals on the molecular properties of proteins, the secondary and tertiary structure and molecular weight size of BSA and ${\beta}$-lactoglobulin were examined after irradiation of proteins at various doses. Gamma-irradiation of protein solutions caused the disruption of the ordered structure of protein molecules as well as degradation, cross-linking, and aggregation of the polypeptide chains. As a model system, BSA and ${\beta}$-lactoglobulin were used as a typical ${\alpha}$-helical and a ${\beta}$-sheet structure protein, respectively. A circular dichroism study showed that the increase of radiation decreased the ordered structure of proteins with a concurrent increase of aperiodic structure content. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. SDS-PAGE and a gel permeation chromatography study indicated that radiation caused initial fragmentation of proteins resulting in a subsequent aggregation due to cross-linking of protein molecules.

  • PDF

Effect of γ-Irradiation on the Molecular Properties of Myoglobin

  • Lee, Yong-Woo;Song, Kyung-Bin
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.590-594
    • /
    • 2002
  • To elucidate the effect of gamma-irradiation on the molecular properties of myoglobin, the secondary and tertiary structures, as well as the molecular weight size of the protein, were examined after irradiation at various irradiation doses. Gamma-irradiation of myoglobin solutions caused the disruption of the ordered structure of the protein molecules, as well as degradation, cross-linking, and aggregation of the polypeptide chains. A SDS-PAGE study indicated that irradiation caused initial fragmentation of the proteins and subsequent aggregation, due to cross-linking of the protein molecules. The effect of irradiation on the protein was more significant at lower protein concentrations. Ascorbic acid protected against the degradation and aggregation of proteins by scavenging oxygen radicals that are produced by irradiation. A circular dichroism study showed that an increase of the irradiation decreased the a-helical content of myoglobin with a concurrent increase of the aperiodic structure content. Fluorescence spectroscopy indicated that irradiation increased the emission intensity that was excited at 280 nm.