• Title/Summary/Keyword: Molecular weight increase

Search Result 595, Processing Time 0.03 seconds

Ozone Deinking Mechanism of White Ledger (White ledger의 오존 탈묵 기구)

  • 원종명;노국일
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.24-28
    • /
    • 2001
  • The utilization of wastepaper as a papermaking raw material is everlastingly required for the environmental protection of earth. However the recycling of wastepaper for this purpose cause another problem such as the increasing of the load of wastewater treatment, lower strength properties of paper, and poor printability, etc. The interest in the development of the environmentally friendly deinking technology is increased continuously. Thus, our research team have tried to apply the ozone to the deinking of white ledger and ONP, and obtained the positive results which can be considered as an alternative method for the conventional deinking method. The purpose of this study is to investigate the mechanism of ozone deinking. Styrene acrylate and polystyrene were treated with ozone and measured the change of molecular weight with the GPC. The molecular weight distribution obtained with GPC showed only slight increase by the ozone treatment, and gel formation by the polymerization was observed. Therefore the removal of ink particles with ozone treatment seems to be facilitated by the increase of the brittleness and decrease of adhesive property.

  • PDF

Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation (이온화 방사선 조사에 의해 얻어진 저분자 laminarin의 분자구조 특성)

  • Choi, Jong-Il
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.780-783
    • /
    • 2013
  • Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

Effects of dietary supplementation with different levels and molecular weights of fungal β-glucan on performances, health and meat quality in broilers

  • Kovitvadhi, Attawit;Chundang, Pipatpong;Tirawattanawanich, Chanin;Prathumpai, Wai;Methacanon, Pawadee;Chokpipatpol, Krith
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1548-1557
    • /
    • 2019
  • Objective: To investigate the effects of dietary supplementation with different levels and molecular weights of fungal ${\beta}$-glucan on productive performances, health, carcass traits and meat quality in broilers. Methods: Two hundred and ten of one-day-old chicks with equal sex were assigned to seven experimental groups in $2{\times}4$ factorial arrangement. These groups were supplemented with (0, 10, 30, and 60 ppm) of molecular weight 1-3, 1-6 ${\beta}$-glucan (low or high). High molecular weight ${\beta}$-glucan (H: 943 kDa) was obtained from Ophiocordyceps dipterigena BCC 2073, whereas H with ${\gamma}$-Irradiation treatment was performed to achieve low molecular weight ${\beta}$-glucan (L: 8 kDa). Results: There was no statistical significance in productive performances, apparent digestibility and interaction between fixed factors along 42 days of experiment (p>0.05). A higher caecal amylase activity was present in the group that received L, while there was a dramatic decrease in H and the control groups, respectively (p<0.05). The increase of supplemental dose increased caecal amylase activity (p<0.05). Immunomodulatory effects from L was revealed by the marked increase of phagocytic activity, relative weight of thymus and bursa of fabricius (p<0.05). Similarly, the additive dose at 30 ppm provided the same results, whereas the only significant difference with supplementation at 60 ppm was an increase in phagocytic activity (p<0.05). Interestingly, villi height of broilers fed L was higher than other groups (p<0.05). The treatments did not influence haematology, blood chemistry, antibody production level against vaccination, carcass traits and meat quality (p>0.05). Conclusion: The supplementation of L at 30 ppm was suggested to achieve benefits of immune modulation without adverse effects on other parameters.

Measurement of Dry Deposition of Polycyclic Aromatic Hydrocarbons in Jeoniu (전주지역에서 다환방향족 탄화수소의 건식 침적 측정)

  • Kim, Hyoung-Seop;Kim, Jong-Guk;Ghim, Young-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.242-249
    • /
    • 2007
  • Deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) were measured at the Chonbuk National University located in Jeonju between June and November 2002. Fluxes of gaseous and particulate PAHs were separately obtained using a water surface sampler (WSS) and a dry deposition plate (DDP). Most of PAHs were deposited in the gaseous form since the low molecular weight PAHs dominates in the atmosphere. The deposition velocity of particulate PAHs was higher than that of gaseous PAHs when the molecular weight was low, but substantially decreased as the fine particle fraction increased with molecular weight. The deposition velocity was generally higher at high wind speeds. However, increase in the deposition velocity in unstable atmospheric conditions was also observed for gaseous PAHs of intermediate molecular weight.

A Study on Heavy Metals Removal in Aqueous Solution Using Autoclaved Chitosan (고온ㆍ고압 처리한 키토산을 이용한 수중의 다양한 중금속 제거에 관한 연구)

  • 김동석;이승원
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.50-58
    • /
    • 2003
  • Removal of heavy metal ions (Cd$^{2+}$, Cr$^{3+}$, Cu$^{2+}$, Pb$^{2+}$) by several chitosans was studied and the molecular weight of chitosan was investigated in order to examine the effect of autoclaving. Chitosan were divided into 3 groups (A type, controlled chitosan; B type, autoclaved for 15 min; C type, autoclaved for 60 min). The heavy metal removal capacity and rate of B type chitosan were higher than those of A type and B type chitosan. The molecular weight of chitosan was decreased by the increase of autoclaving time. Therefore, the heavy metal capacity was not well correlated to the molecular weight. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual heavy metal ions on chitosan. Langmuir isotherm was well fitted to this experimental data. The heavy metal removal capacity of B type chitosan was in the order of Pb$^{2+}$ > Cu$^{2+}$ > Cd$^{2+}$> Cr$^{3+}$.3+/.$.3+/.

Preparation of Adhesion Promoter for Lead Frame Adhesion and Application to Epoxy Composite

  • Kim, Jung Soo;Kim, Eun-jin;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.48-54
    • /
    • 2022
  • A polymeric adhesion promoter was synthesized to improve the adhesive strength of the Ni lead frame/epoxy composite. Poly(itaconic acid-co-acrylamide) (IAcAAM) was prepared by copolymerizing itaconic acid and acrylamide. We compared the adhesive strength between the Ni lead frame and epoxy composite according to the molecular weight of IAcAAM. The molecular weight of IAcAAM was controlled using an initiator, which made it possible to use IAcAAM in the epoxy molding compound (EMC) manufacturing process by modulating the melting temperature. The adhesive strength of Ni lead frame/epoxy composite increased with the addition of IAcAAM to the epoxy composite. In addition, as the molecular weight of IAcAAM increased, the adhesive strength of the Ni lead frame/epoxy composite slightly increased. We confirmed that IAcAAM with an appropriate molecular weight can be used in the EMC manufacturing process and increase the adhesive strength of the Ni lead frame/epoxy composite.

Effect of Gelling Agent Molecular Weight on Self-Discharge Behavior for Zinc-Air Batteries (아연-공기 전지용 전해질의 Gelling Agent 분자량에 따른 자가 방전 억제 효과)

  • Park, Jeong Eun;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.812-817
    • /
    • 2019
  • A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.

Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

  • Yoon Cheol Soo;Ji Dong Sun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

A Study on the Biodegradability and Characteristics Based on Apparent Molecular Weight Distribution of Dissolved Organic Matter in Sewage (하수중 용존 유기물의 생분해도 및 분자량 분포에 따른 거동특성에 관한연구)

  • 최정헌;이윤진;명복태;우달식;이운기;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2001
  • This present study was aimed to investigate the characteristics of dissoloved organic matter (DOC) in sewage. The results are summarized as follows ; The plateaux reached in 3~4 days by the biodegradability test on sewage samples based on DOC. 쏭 rations of BDOC to DOC were 48, 21, 13 and 11% for raw sewage, primary treatment effluent, secondary treatment effluent and final treatment effluent, respectively. As the SUVA values ranged less 3L/m.mg for the effluent of sewage treatment plant, the DOC is composed largely of non-humic materials, hydrophilic, less aromatic as compared to waters with higher SUVA values. Through the biodegradability test, Dissolved organics showed that the quantity of LMW(Low Molecular Weight) less than 1,000 daltons was decreased, HMW(High Molecular Weight) more than 30,000 daltons had a tendency to increase. Large portion of UV$^{254}$ in final treatment effluent was increased of MMW(Medium Molecular Weight). Also, average removal efficiency of DOC was 32% during sewage treatment.

  • PDF

Modification of GCC with Poly-DADMAC and PSS with Different Molecular Weights and its Effect on the Paper Properties (Poly-DADMAC과 PSS의 분자량을 달리한 중질탄산칼슘의 개질과 종이 물성에 미치는 영향)

  • Ahn, Jungeon;Lee, Jegon;Lee, Hye Yoon;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • In this study, we modified the surface of ground calcium carbonate (GCC) with polyelectrolytes with different molecular weight using Layer-by-Layer (LbL) multilayering technique and investigated its effect on the paper properties. Polydiallydimethylammonium chloride (poly-DADMAC) and poly sodium 4-styrene sulfonate (PSS) which have different molecular weights were used for LbL multilayering. Zeta potential and particle size of the LbL modified GCC were measured. After preparation of handsheets, their structural and mechanical properties were evaluated. The zeta potential and average particle size of the modified GCC were affected by the molecular weight of anionic polyelectrolyte (PSS). The zeta potential was higher and the particle size was smaller when GCC was treated by PSS with high molecular weight compared to the case with low molecular weight of PSS. The tensile and internal bond strength of the handsheets was increased with an increase in the number of layers on GCC particles, but the molecular weight of polyelectrolyte did not significantly affect the paper strength.