• Title/Summary/Keyword: Molecular structures

Search Result 1,356, Processing Time 0.028 seconds

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Serum Levels of Insulin-Like Growth Factor-I in Flounder, Parlichthys olivaceus (넙치 (Parlichthys olivaceus) 혈액중 Insulin-like growth factor-I의 함유수준)

  • NAM Taek-Jeong;PARK Kie-Young;LEE Young-Don;KIM Yong-Uk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.150-156
    • /
    • 1996
  • Insulin-like growth factor-1 (IGF-I) is a mitogenic peptide with molecular mass of 7kDa. It is produced mainly in the liver and has important functions in the regulation of development and somatic growth. Recently, several investigations were undertaken to examine the biological actions and structures of IGF-I in fish. In this study, the serum levels of IGF-I were estimated from flounder, Parlichthys oilvaceus, before, during and after fasting, and the levels were accounted for 47 ng/ml, 40 ng/ml and 45 ng/ml, respectively. These results suggest that food deprivation primarily reduces IGF-I level in the blood.

  • PDF

Synthesis and Membrane Preparation of Polyimides for Non-aqueous System (비수계용 폴리이미드 합성 및 분리막 제조)

  • 전종영;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.39-45
    • /
    • 1997
  • Introduction : Polyimides are one of the most important classes of the high performance polymers due to their excellent electrical, thermal, and high-temperature mechanical properties. But their uses are limited because of their poor solubility. Most polyimide derivatives are processed in the form of polyamic acids, which are subsequently converted into the imide structures.Recently, it has been found that the soluble polyimides with large molecular weight sufficient to application. For enhancing processability, the majority of approaches have involved the following factors. As much as, the separation of the imide ring along the back-bone, that is to say, reducing the density of imide ring in the repeat structure. The introduction of bulky substituents along the back-bone, in order to enhance the free volume of main-chain. The incorporation of flexible or thermally stable linkages in the main-chain, reducing the packing force. The disruption of symmetry or recurrence regularity through copolymerization in order to reduce crystallnity.The objectives of this investigation are the synthesis and characterization of soluble polyimides as membrane materials by the single-step polymerization and the preparation of the asymmetric polyimide membrane by using phase inversion technique. In the present study, three series of polyimide derivatives are synthesized; H series is homopolyimides, A series is prepared from single dianhydride and two diamines, B series is yielded from two dianhydrides and a diamine. The dope solution was directly prepared from the PI solution via one step polymerization from monomers.

  • PDF

Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars

  • Song, Minjung;Kim, Hana;Choi, Yoonjeong;Kim, Kyungho;Chung, Chooryung
    • The korean journal of orthodontics
    • /
    • v.42 no.5
    • /
    • pp.249-254
    • /
    • 2012
  • Objective: To investigate the stem cell-like characteristics of human periodontal ligament (PDL) stromal cells outgrown from orthodontically extracted premolars and to evaluate the potential for myogenic differentiation. Methods: PDL stromal cells were obtained from extracted premolars by using the outgrowth method. Cell morphological features, self-replication capability, and the presence of cell-surface markers, along with osteogenic, adipogenic, and chondrogenic differentiation, were confirmed. In addition, myogenic differentiation was induced by the use of 5-aza-2'-deoxycytidine (5-Aza) for DNA demethylation. Results: PDL stromal cells showed growth patterns and morphological features similar to those of fibroblasts. In contrast, the proliferation rates of premolar PDL stromal cells were similar to those of bone marrow and adipogenic stem cells. PDL stromal cells expressed surface markers of human mesenchymal stem cells (i.e., CD90 and CD105), but not those of hematopoietic stem cells (i.e., CD31 and CD34). PDL stromal cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages. Myotube structures were induced in PDL stromal cells after 5-Aza pretreatment, but not in the absence of 5-Aza pretreatment. Conclusions: PDL stromal cells isolated from extracted premolars can potentially be a good source of postnatal stem cells for oromaxillofacial regeneration in bone and muscle.

Two Algorithms for Constructing the Voronoi Diagram for 3D Spheres and Applications to Protein Structure Analysis (삼차원 구의 보로노이 다이어그램 계산을 위한 두 가지 알고리듬 및 단백질구조채석에의 응용)

  • Kim D.;Choi Y.;Kim D.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.97-106
    • /
    • 2006
  • Voronoi diagrams have been known for numerous important applications in science and engineering including CAD/CAM. Especially, the Voronoi diagram for 3D spheres has been known as very useful tool to analyze spatial structural properties of molecules or materials modeled by a set of spherical atoms. In this paper, we present two algorithms, the edge-tracing algorithm and the region-expansion algorithm, for constructing the Voronoi diagram of 3D spheres and applications to protein structure analysis. The basic scheme of the edge-tracing algorithm is to follow Voronoi edges until the construction is completed in O(mn) time in the worst-case, where m and n are the numbers of edges and spheres, respectively. On the other hand, the region-expansion algorithm constructs the desired Voronoi diagram by expanding Voronoi regions for one sphere after another via a series of topology operations, starting from the ordinary Voronoi diagram for the centers of spheres. It turns out that the region-expansion algorithm also has the worst-case time complexity of O(mn). The Voronoi diagram for 3D spheres can play key roles in various analyses of protein structures such as the pocket recognition, molecular surface construction, and protein-protein interaction interface construction.

Application of Molecular Mechanics to the Structure of 1,6-Anhydropyranoses (1,6-Anhydropyranose의 분자구조의 역학적응용)

  • George A. Jeffrey;Young Ja Park
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.206-209
    • /
    • 1979
  • Empirical force-field calculations have been applied to eight 1,6-anhydropyra-noses, the crystal structures$^{13{\sim}21}$ of which have been studied by single crystal X-ray or neutron diffraction analysis. The theoretical calculations reproduce closely the variations in conformation between $^1C_4$ and $E_0$, which are observed in the pyranose rings. The smaller conformational differences in the five-membered anhydro ring are not so well predicted. The calculated C-C bond lengths agree with those observed within 0.012${\AA}$ with one exception. The C-O bond lengths show a larger deviation, 0.027${\AA}$. The non-hydrogen atom valence angles agree within 1.9$^{\circ}$.

  • PDF

The Crystal and Molecular Structures of Sulfamethoxypyridazine (Sulfamethoxypyridazine의 결정 및 분자구조)

  • Young Ja Lee;Young Ja Park
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.219-227
    • /
    • 1981
  • The crystal structure of sulfamethoxypyridazine has been solved by the direct method and refined by least squares methods from three-dimensional data collected by the multiple-film technique to a final residual of 8.5%. Two molecules (A and B) in one asymmetric unit are different each other in the conformation about S-N(2) bond, and are linked together by N(2A)H${\ldots}$N(3B) and N(2B)H${\ldots}$O(1A)S hydrogen bonds. Benzene and pyridazine rings make the angles of $89^{\circ}$ and $77^{\circ}$ for molecules A and B respectively.

  • PDF

Observational Studies of Masers in Star-forming Regions with KVN and KaVA

  • Kim, Kee-Tae;Hirota, Tomoya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.113.2-113.2
    • /
    • 2014
  • Methanol masers are divided into two classes, I and II. Class II methanol masers trace the disk-outflow systems of massive young stellar objects (YSOs), while class I methanol masers appear to trace the interaction regions of outflows with the ambient molecular gas. Class II masers have been extensively studied by single dishes, connected arrays, and VLBIs. Meanwhile, class I masers have been much less studied. They have not been detected by any VLBI facility. Thus they have been believed to have more extended structures than class II masers. We made fringe surveys of 44GHz class I methanol maser emission towards more than 150 massive YSOs with flux densities >10 Jy using the Korean VLBI Network (KVN), and detected fringes in ~10% of the sources. We performed follow-up imaging observations of the detected maser sources with KVN and KVN+VERA (KaVA). The observations aim to investigate the distribution and kinematics of 44GHz methanol maser features in each source at milli-arcsecond resolutions, and to understand what they trace. In this talk we will present the fringe survey and imaging results and our plans for further studies. Additionally, we will also introduce the preliminary results of single-dish polarization observations of water and class I methanol masers.

  • PDF

Fully Organic PIN OLEDs with High Power Efficiency and Long Lifetime for the Use in Display and Lighting Applications

  • Blochwitz-Nimoth, Jan;Birnstock, Jan;Wellmann, Philipp;Werner, Ansgar;Romainczyk, Tilmann;Limmert, Michael;Grubing, Andre
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.955-962
    • /
    • 2005
  • Power efficiency, lifetime and stable manufacturing processes are the crucial parameters for the success of organic light emitting diodes (OLEDs) in display and lighting applications. Highest power efficiencies of PIN-OLEDs for all principal colours and for bottom and top emission OLED structures have been demonstrated. The PIN structure, which means the incorporation of intentionally doped charge carrier transport layer in a suitable OLED layer setup, lowers the operating voltage to achieve highest power efficiencies. Up to now the n-doping of the electron transport layer has been done by alkali metal co-deposition. This has main draw-backs in terms of manufacturability, since the handling of large amounts of pure Cs is a basic issue in production lines. Here we present in detail results on PIN-OLEDs comprising a newly developed molecular n-dopant. All the previous OLED performance data based on PIN-OLEDs with alkali metal doping could be reproduced and will be further improved in the future. Hence, for the first time, a full manufacturing compatible PIN-OLED is available.

  • PDF

Light Emitting Characteristics of Multi-layer OLEO Fabricated with DCM (DCM 계열을 이용한 OLED의 전기적인 발광 특성에 관한 연구)

  • Chun, Min-Ho;Yun, Suk-Won;Lim, Sung-Tack;Shin, Dong-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.57-60
    • /
    • 2002
  • In generally, the guest-emitter doped system has been reported to give a bright electroluminescence(EL). The purpose of using doped system is to improve for increasing lifetime and efficiency, and tuning multicolor light. This indicates an enhanced electron-hole recombination rate in emitting layer. The purpose of this study is to obtain the high performance EL devices for flat panel display with red emission. We fabricated EL devices using the guest-host system. where DCM derivatives were taken as a dopant. The devices are fabricated in multilayer system with various concentration of the dopant (red light emitting dye). We measured the I-V characteristics and EL spectra from these devices. and we compared with photoluminescence(PL) quantum yield among the DCM derivatives. The emission mechanism of devices is participated in energy transfer. The energy transfer from these hosts to DCM generates luminescence spectra that vary from yellow red to red, depending on DCM derivatives. Absorption and emission spectra of organic materials composing the devices depend on the emission materials doped with the DCM derivatives. We demonstrated that the high EL efficiency can be achieved by doping host material with DCM derivatives and molecular steric structures

  • PDF