• Title/Summary/Keyword: Molecular structures

Search Result 1,356, Processing Time 0.028 seconds

Structural analysis of sialyltransferase PM0188 from Pasteurella multocida complexed with donor analogue and acceptor sugar

  • Kim, Dong-Uk;Yoo, Ji-Ho;Lee, Yong-Joo;Kim, Kwan-Soo;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.48-54
    • /
    • 2008
  • PM0188 is a newly identified sialyltransferase from P. multocida which transfers sialic acid from cytidine 5'-monophosphonuraminic acid (CMP-NeuAc) to an acceptor sugar. Although sialyltransferases are involved in important biological functions like cell-cell recognition, cell differentiation and receptor-ligand interactions, little is known about their catalytic mechanism. Here, we report the X-ray crystal structures of PM0188 in the presence of an acceptor sugar and a donor sugar analogue, revealing the precise mechanism of sialic acid transfer. Site-directed mutagenesis, kinetic assays, and structural analysis show that Asp141, His311, Glu338, Ser355 and Ser356 are important catalytic residues; Asp141 is especially crucial as it acts as a general base. These complex structures provide insights into the mechanism of sialyltransferases and the structure-based design of specific inhibitors.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Biochemical and Structural Analysis of Hormone-sensitive Lipase Homolog EstE7: Insight into the Stabilized Dimerization of HSL-Homolog Proteins

  • Nam, Ki-Hyun;Park, Sung-Ha;Lee, Won-Ho;Hwang, Kwang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2627-2632
    • /
    • 2010
  • Hormone sensitive lipase (HSL) plays a major role in energy homeostasis and lipid metabolism. Several crystal structures of HSL-homolog proteins have been identified, which has led to a better understanding of its molecular function. HSL-homolog proteins exit as both monomer and dimer, but the biochemical and structural basis for such oligomeric states has not been successfully elucidated. Therefore, we determined the crystal structure of HSL-homolog protein EstE7 from a metagenome library at $2.2\;{\AA}$ resolution and characterized the oligomeric states of EstE7 both structurally and biochemically. EstE7 protein prefers the dimeric state in solution, which is supported by its higher enzymatic activity in the dimeric state. In the crystal form, EstE7 protein shows two-types of dimeric interface. Specifically, dimerization via the external ${beta}8$-strand occurred through tight association between two pseudosymmetric folds via salt bridges, hydrogen bonds and van der Waals interactions. This dimer formation was similar to that of other HSL-homolog protein structures such as AFEST, BEFA, and EstE1. We anticipate that our results will provide insight into the oligomeric state of HSL-homolog proteins.

Chorion Gene Expression in the Cellular Differentiation and Accumulation of Chorion Protein of Silkmoth, Bombyx mandarina I. Specific Structures of Egg-shell and Chorion Protein (한국산 멧누에 (Bombyx mandarina)에 있어서 난각유전자의 형질발현. I. 난각구조의 특이성과 Chorion 단백질)

  • 노시갑
    • Korean journal of applied entomology
    • /
    • v.29 no.3
    • /
    • pp.157-164
    • /
    • 1990
  • The surface patterns and the structures of transverse section of the egg-shell of the sikmoth, Bombyx mandarina, have been described by scanning electron microscope. Three spatially differentiated cross section, called lamellar, conic pillar and cover layers, are found on the mature eg-shell. Silkmoth chorion proteins were detected more than 80 components from a single chorion by two-dimensional electrophoresis. Major protein components of the egg-shell have bee identified on the basis of their isoelectric points and molecular weights, pH 4-6 and 6-30 kd. Several protein components are found entirely or predominantly in th cover layers.

  • PDF

Rescuing p53 from mdm2 by a pre-structured motif in intrinsically unfolded SUMO specific protease 4

  • Kim, Do-Hyoung;Lee, Chewook;Kim, Bom;Lee, Si-Hyung;Han, Kyou-Hoon
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.485-486
    • /
    • 2017
  • Many intrinsically unstructured/unfolded proteins (IUPs) contain transient local secondary structures even though they are "unstructured" in a tertiary sense. These local secondary structures are named "pre-structured motifs (PreSMos)" and in fact are the specificity determinants for IUP-target binding, i.e., the active sites in IUPs. Using high-resolution NMR we have delineated a PreSMo active site in the intrinsically unfolded mid-domain (residues 201-300) of SUMO-specific protease 4 (SUSP4). This 29-residue motif which we termed a p53 rescue motif can protect p53 from mdm2 quenching by binding to the p53-helix binding pocket in mdm2(3-109). Our work demonstrates that the PreSMo approach is quite effective in providing a structural rationale for interactions of p53-mdm2-SUSP4 and opens a novel avenue for designing mdm2-inhibiting anticancer compounds.

The Infrared Absorption Spectra of Molecular Clusters of Acetonitrile and DMF Diluted by Matrices at 80K (매트릭스에 의해 희석된 ACETONITRILE과 DMF 분자클라스터의 80K에서 적외선 흡수 스펙트럼의 분석)

  • Kim, Wan Hee;Jeong, Jong Hak;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.285-294
    • /
    • 1992
  • Structures of dimers of the acetonitrile and DMF diluted by carbon-tetrachloride and xenon matrices at 80K were studied with infrared absorption spectroscopy. Sample and matrix materials were codeposited onto a KBr cold trapping window. Infrared absorption spectra of pure samples and diluted samples were compared to explain the structures of dimers. The acetonitrile dimer showed the antiparallel shape and the DMF dimer showed the linear shape. After annealing, the infrared spectrum of the diluted sample showed the same shape with that of the pure sample.

  • PDF

A Study on Electronic Structures of Spinel-Type Manganese Oxides for Lithium Ion Adsorbent using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법을 이용한 리튬이온 흡착제용 스피넬형 망간산화물의 전자상태에 관한 연구)

  • Kim, Yang-Su;Jeong, Gang-Seop;Lee, Jae-Cheon
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Discrete-variational(DV)-$X{\alpha}$ method was applied to investigate the electronic structures of spinel- type manganese oxide which is well known to the high performance adsorbent or cathode material for lithium ion. The results of DOS(density of states) and Mulliken population analysis showed that Li was nearly fully ionized and interactions between Mn and O were strong covalent bond. The effective charge of Li and Mn was +0.77 and +1.44 respectively and the overlap population between Mn and O was 0.252 in $LiMn_2O_4$. These results from DV-X$\alpha$ method were well coincided with the experimental result by XPS analysis and supported the feasibility of theoretical interpretation for the $LiMn_2O_4$ compound.

Ab initio Studies on Acene Tetramers: Herringbone Structure

  • Park, Young-Hee;Yang, Ki-Yull;Kim, Yun-Hi;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1358-1362
    • /
    • 2007
  • The structures, energetics and transfer integrals of the acene tetramers up to pentacene are investigated with the ab initio molecular orbital method at the level of second-order Møller-Plesset perturbation theory (MP2). Calculated geometries for the herringbone-style structures found in the crystal structure were characterized as local minima, however the geometrical discrepancy between crystal and MP2 theoretical structure is reasonably small. The binding energy of pentacene tetramer was calculated up to 40 kcal/mol (MP2/6-31G(d)) and about 90 kcal/mol (MP2/aug-cc-pVDZ), and the latter seems to be too much overestimated. The tendency of the hole transfer integrals computed with ab initio MP2/3-21G(d) geometry is well agreement with those estimated with crystal structure with some discrepancy, and the gradual increment of the transfer integrals at the crystal geometry is attributed to mainly packing structure rather than the intrinsic property of acene such as a size of acene.

Density Functional Theory Study on D-π-A-type Organic Dyes Containing Different Electron-Donors for Dye-Sensitized Solar Cells

  • Song, Jing;Xu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3211-3217
    • /
    • 2013
  • Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been employed to investigate the molecular structures and absorption spectra of three D-${\pi}$-A-type organic dyes (C1-1, D5 and TH208) containing identical ${\pi}$-spacers and electron acceptors, but different aromatic amine electron-donating groups (tetrahydroquinoline, triphenylamine and phenothiazine). The coplanar geometries indicate that the strong conjugation is formed in the dyes. The electronic structures suggest that the intramolecular charge transfer from the donor to the acceptor occurs, and the electron-donating ability of tetrahydroquinoline is stronger than those of triphenylamine and phenothiazine. The computed orbital energy levels of these dyes confirm that the electrons could be injected from the excited dyes to the semiconductor conduction band and the oxidized dyes could be reduced effectively by electrolyte. The TD-DFT results show that the CAM-B3LYP/6-31+G(d, p) is suitable for calculating the absorption spectra. The first absorption band for these dyes is assigned to the HOMO${\rightarrow}$LUMO and HOMO-1${\rightarrow}$LUMO transitions.

Carbon-13 CP MAS NMR Study on Structures of Octadecyl Chains Influenced by Co-Presence of 3-Aminopropyl Chains on SBA-15

  • Han, Oc-Hee;Bae, Yoon-Kyung;Jeong, Soon-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.405-407
    • /
    • 2008
  • Functionalized SAB-15 samples by octadecyltrimethoxysilane (OTC) were studied by 13C magic angle spinning (MAS) cross polarization (CP) nuclear magnetic resonance (NMR) spectroscopy. In the SBA-15 sample fully functionalized by 3-aminopropyltrimethoxysilane (APS) and OTC in 1:1 molar ratio, octadecyl chains were observed to have, on average, more trans conformation than those in the SBA-15 samples fully modified by OTC only. Our results confirm that long chain molecules tend to organize themselves better in the co-presence of short chain molecules on the surface of mesoporous materials by packing of the different length chains in an interdigitized fashion even when the short chains are long enough to have three carbons and a functional group at the ends. In addition, our results indicate that solid-state 13C CP MAS NMR spectroscopy is a simple and non-destructive method to probe the molecular structures of the domains composed of long alkyl chains.