• Title/Summary/Keyword: Molecular structures

Search Result 1,356, Processing Time 0.032 seconds

Preparation of Branched Polystyrene Using Atom Transfer Radical Polymerization Techniques and Protection-Deprotection Chemistry

  • Kwark, Young-Je
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.238-246
    • /
    • 2008
  • A new strategy using protection-deprotection chemistry was used to prepare branched polymers using the ATRP method only. Among the several monomers with different protecting groups, vinyl benzyl t-butyloxy carbonate (VBt-BOC) and 4-methyl styrene (4-MeSt) could be polymerized successfully to form backbones using the ATRP method in a controlled fashion. The protected groups in the backbones were converted to alkyl bromides and used as initiating sites for branch formation. The benzyl t-butyloxy carbonate groups in the backbones containing VBt-BOC units were first deprotected to benzyl alcohol by trifluoroacetic acid, then converted to benzyl bromide by reacting them with triphenylphosphine/carbon tetrabromide. The benzyl bromide groups in the backbones containing 4-MeSt units could be generated by bromination of the methyl groups using N-bromosuccinimide/benzoyl peroxide. The structures of the prepared polymers were well-controlled, as evidenced by the controlled molecular weight as well as the narrow and unimodal molecular weight distribution.

Computational evaluation of interactions between olfactory receptor OR2W1 and its ligands

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.9.1-9.5
    • /
    • 2021
  • Mammalian olfactory receptors are a family of G protein-coupled receptors (GPCRs) that occupy a large part of the genome. In human genes, olfactory receptors account for more than 40% of all GPCRs. Several types of GPCR structures have been identified, but there is no single olfactory receptor whose structure has been determined experimentally to date. The aim of this study was to model the interactions between an olfactory receptor and its ligands at the molecular level to provide hints on the binding modes between the OR2W1 olfactory receptor and its agonists and inverse agonists. The results demonstrated the modes of ligand binding in a three-dimensional model of OR2W1 and showed a statistically significant difference in binding affinity to the olfactory receptor between agonists and inverse agonists.

Recent Progress in Alpha-emitting Radiopharmaceutical Development for Clinical Application

  • Choong Mo Kang;Yearn Seong Choe
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.157-166
    • /
    • 2022
  • Targeted alpha therapy began to be applied to the treatment of late-stage cancer patients because of its dramatic therapeutic efficacy in patients who have no responses with beta-emitting radiopharmaceuticals. However, its strong cytotoxicity may cause side effects due to undesirable uptake in non-target tissues. In order to use alpha-emitting radiopharmaceuticals for early-stage patients as well as late-stage cancer patients, therefore, modifications on their chemical structures are required. In this review, the recent progress in the development of alpha-emitting radiopharmaceuticals is discussed.

Computational approaches for molecular characterization and structure-based functional elucidation of a hypothetical protein from Mycobacterium tuberculosis

  • Abu Saim Mohammad, Saikat
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.25.1-25.12
    • /
    • 2023
  • Adaptation of infections and hosts has resulted in several metabolic mechanisms adopted by intracellular pathogens to combat the defense responses and the lack of fuel during infection. Human tuberculosis caused by Mycobacterium tuberculosis (MTB) is the world's first cause of mortality tied to a single disease. This study aims to characterize and anticipate potential antigen characteristics for promising vaccine candidates for the hypothetical protein of MTB through computational strategies. The protein is associated with the catalyzation of dithiol oxidation and/or disulfide reduction because of the protein's anticipated disulfide oxidoreductase properties. This investigation analyzed the protein's physicochemical characteristics, protein-protein interactions, subcellular locations, anticipated active sites, secondary and tertiary structures, allergenicity, antigenicity, and toxicity properties. The protein has significant active amino acid residues with no allergenicity, elevated antigenicity, and no toxicity.

BISTROs and Varying Magnetic Fields with Density in Serpens Main

  • Kwon, Woojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.57.4-58
    • /
    • 2020
  • The B-fields in Star-forming Region Observations (BISTRO) is a large program of the James Clerk Maxwell Telescope (JCMT) to study the roles of magnetic fields in molecular clouds on intermediate scales (a few thousands au or larger scales), in which a large number of researchers over the world are involved. This project was initiated in 2016 with polarimetric observations of nearby star-forming regions and has been extended toward massive and farther regions (BISTRO-2) and various evolutionary stages and environmental conditions (BISTRO-3). The current status of the BISTRO projects is reported. In addition, we discuss magnetic fields in the Serpens Main molecular cloud, which is one of the BISTRO star-forming regions. Utilizing the Histogram of Relative Orientations method, which compares polarization directions with density gradients, we show that magnetic fields are parallel to filaments in less dense filamentary structures but perpendicular to dense ones. Furthermore, the magnetic field directions with respect to density gradients vary again with density in denser core regions, which is understood by core formation and pinched fields. Note: (PI) D. Ward-Thompson, (co-PIs) P. Bastien, T. Hasegawa, W. Kwon, S. Lai, and K. Qiu

  • PDF

Filaments and Dense Cores in IC5146: Roles of Gravity, Turbulence, and Magnetic Field

  • Chung, Eun Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2020
  • Filamentary structures pervade the whole kind of molecular clouds from low- to high-mass star-forming clouds, and the non-star-forming clouds. It is supposed to be a prerequisite stage of star formation, and hence how filaments and dense cores form is one of the critical questions in the early star formation study. We investigated the dynamics and chemistry of dense cores in IC5146 using TRAO FUNS (TRAO Survey of the nearby Filamentary molecular clouds, the Universal Nursery of Stars) data. In addition, we performed polarization observation using JCMT Pol-2 polarimetry to investigate the magnetic field morphology within a core-scale. In the presentation, we will present the result of TRAO FUNS and JCMT/Pol2 observation toward the filaments and dense cores in the IC5146. We aim to reveal the roles of gravity, turbulence, and magnetic field in the formation of dense cores in the western hub-filament structure of IC5146.

  • PDF

Two new records of Laurencia decussata and L. pacifica from Korea based on morphological structures and molecular data

  • Paola Romero-Orozco;Boo Yeon Won;Tae Oh Cho
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.666-676
    • /
    • 2023
  • Laurencia is a red algal genus that was described by J.V. Lamouroux in 1813. The main characteristics of this genus have been known as the presence of four pericentral cells in an axial segment, secondary pit connections between adjacent epidermal cells, and the presence of corps en cerise in both epidermal and trichoblast cells. Additionally, the tetrasporangia are arranged in a parallel manner, and male branches feature terminal cup-shaped spermatangial pits. Currently, sixteen Korean Laurencia species have been reported based on their morphological characteristics. In this study, Laurencia decussata and L. pacifica have been added as new records to the Korean algal flora based on a combination of morphological observations and molecular analyses of rbcL sequences. Laurencia decussata has expanded from Australia and New Zealand to Korea, while the distribution of L. pacifica has expanded from USA and Mexico to Korea.

Heterometal-Coordinated Monomeric Concanavalin A at pH 7.5 from Canavalia ensiformis

  • Chung, Nam-Jin;Park, Yeo Reum;Lee, Dong-Heon;Oh, Sun-Young;Park, Jung Hee;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2241-2244
    • /
    • 2017
  • The structure of concanavalin A (ConA) has been studied intensively owing to its specific interactions with carbohydrates and its heterometal ($Ca^{2+}$ and $Mn^{2+}$) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of $1.6{\AA}$, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.

A Study of Characteristics of Water Droplets on Various Nanoscale Structures Using Molecular Dynamics (분자동역학을 이용한 다양한 구조물 위의 수액적의 특성에 대한 연구)

  • Lee, Kwang Ho;Kwon, Tae Woo;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • This study numerically investigated statistic and dynamic behaviors of the water droplet on plate with or without various structured-pillars at nano-scale by molecular dynamics simulation. This study considered smooth plate, plate with the rectangular-structured pillar, and the plate with dual-structured pillar under various characteristic energy conditions. The static behavior of water droplet depending on the plate shape, plate surface energy, and the pillar characteristics were examined. After the water droplet reaches its steady state, this study investigated the dynamic behavior of the water droplet by applying a constant force. Finally, this study investigated the static and dynamic behaviors of the water droplet by measuring its contact angle and contact angle hysteresis. As a result, we found that the structure was more hydrophobic.

MOUNT FUJI [CI] LINE SURVEY

  • SAKA TAKESHI;YAMAMOTO SATOSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.253-256
    • /
    • 2005
  • We have constructed the Mount Fuji submillimeter-wave telescope at Nishiyasugawara (alt. 3725 m) near the summit of Mt. Fuji (alt. 3774 m). Thanks to the excellent condition of Mt. Fuji, we have successfully carried out the [CI] survey toward more than 40 square degrees of sky, including qrion MC, Taurus MC, Rosetta MC, DR 15, DR 21, NGC 1333, NGC 2264, W 3, W 44, W 51, L 134, p-Oph. Our [CI] survey have revealed that the [CI] 492 GHz emission widely extends to the molecular clouds. The spatial and velocity structures of the [CI] 492 GHz emission resemble those of 13CO J=l-0 in many molecular clouds, implying that [CI] 492 GHz and $^{13}CO$ J=1-0 are emitted from the same gas. The column density of $C^o$ linearly correlates with that of CO up to high Av, suggesting that $C^o$ exist in the deep interior of molecular clouds. In several regions, we have found that the distributions of $C^o$ and CO are different from each other. The $C^o$-rich area is found in the Hieles' cloud 2. The C+/CO/$C^o$ configuration is found in DR 15, p-Oph, M 17, Orion KL, and NGC 1333. These results indicate that an origin of $C^o$ is unrelated with the photodissociation process. We discuss the observed $C^o$ distributions in relation to the non-equilibrium chemistry.