• Title/Summary/Keyword: Molecular orbitals

Search Result 54, Processing Time 0.018 seconds

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1704-1710
    • /
    • 2010
  • The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.

Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet (Mn-dimer 분자자성체의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.97-100
    • /
    • 2014
  • We have studied electronic and magnetic structure of Mn-dimer molecule using OpenMX method based on density functional method. The calculated density of states shows that the four O atoms split $e_g$ and $t_{2g}$ energy levels. The energy splitting by the crystal field is smaller than bulk MnO with cubic structure, because of small coordination number of atoms. Total energy with antiferromagnetic spin configuration is lower than that of ferromagnetic configurations. Calculated exchange interaction J between Mn atoms is one order larger than that of the other Mn-O magnetic molecules. That comes from the direct exchange interaction between Mn 3d orbitals and the super-exchange interactions caused by strong ${\sigma}$-bonding of Mn-O orbitals.

The 3-[3α(2α-Hydroxy)pinane]-4,5-(pinan)-1,3-oxazolidine Synthesis, Structure and Properties

  • Bialek, Magdalena;Trzesowska, Agata;Kruszynski, Rafal
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • The new pinane derivative containing unique multifused ring system was synthesized. The crystal, molecular and electronic structure of the title compound has been determined. Both pinane ring systems have the same conformation. The five-membered oxazolidine ring exists in twisted chair conformation. The structure is expanded through O-H…O hydrogen bond to semiinfinite hydrogen-bonded chain. The bond lengths and angles in the optimised structure are similar to the experimental ones. The CH3 and CH2 groups (except this of oxazolidine ring) are negatively charged whereas the CH groups are positively charged. The largest negative potential is on the oxygen atoms. The C-N natural bond orbitals are polarised towards the nitrogen atom (ca. 61% at N) whereas the C-O bond orbitals are polarised towards the oxygen atom (ca. 67% at O). It is consistent with the charges on the nitrogen and oxygen atom of oxazolidine ring and the direction of the dipole moment vector (3.08 Debye).

Theoretical Study of the N-(2,5-Methylphenyl)salicylaldimine Schiff Base Ligand: Atomic Charges, Molecular Electrostatic Potential, Nonlinear Optical (NLO) Effects and Thermodynamic Properties

  • Zeyrek, Tugrul C.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.461-471
    • /
    • 2013
  • Optimized geometrical structure, atomic charges, molecular electrostatic potential, nonlinear optical (NLO) effects and thermodynamic properties of the title compound N-(2,5-methylphenyl)salicylaldimine (I) have been investigated by using ab initio quantum chemical computational studies. Calculated results showed that the enol form of (I) is more stable than keto form. The solvent effect was investigated for obtained molecular energies, hardneses and the atomic charge distributions of (I). Natural bond orbital and frontier molecular orbital analysis of the title compound were also performed. The total molecular dipole moment (${\mu}$), linear polarizability (${\alpha}$), and first-order hyperpolarizability (${\beta}$) were calculated by B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets to investigate the NLO properties of the compound (I). The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450 K.

An Easy-to-Use Three-Dimensional Molecular Visualization and Analysis Program: POSMOL

  • Lee, Sang-Joo;Chung, Hae-Yong;Kim, Kwang S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1061-1064
    • /
    • 2004
  • Molecular visualization software has the common objective of manipulation and interpretation of data from numerical simulations. They visualize many complicated molecular structures with personal computer and workstation, to help analyze a large quantity of data produced by various computational methods. However, users are often discouraged from using these tools for visualization and analysis due to the difficult and complicated user interface. In this regard, we have developed an easy-to-use three-dimensional molecular visualization and analysis program named POSMOL. This has been developed on the Microsoft Windows platform for the easy and convenient user environment, as a compact program which reads outputs from various computational chemistry software without editing or changing data. The program animates vibration modes which are needed for locating minima and transition states in computational chemistry, draws two and three dimensional (2D and 3D) views of molecular orbitals (including their atomic orbital components and these partial sums) together with molecular systems, measures various geometrical parameters, and edits molecules and molecular structures.

Theoretical Study on the Regioselectivity of Tetrazolylimines with Alkyl Grignard Reagents

  • 유성은;공영대;김수경
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.441-444
    • /
    • 1999
  • The alkyl Grignard addition reaction on 1-benzyltetrazolylimine proceeds to give N-alkylated products (azophilic addition) and, in contrast, the same reaction on 2-benzyltetrazolylimine produced predominantly C-alkylated products (carbophilic addition). In this report we described theoretical explanations for this experimental finding on the basis of the frontier molecular orbitals and the electrostatic nature of the reactants and the reaction intermediates.

Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)] (원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)])

  • Sangwoon Ahn;Jeoung Soo Ko
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.198-205
    • /
    • 1979
  • A valence bond method of calculation of the dipole moments for octahedral $(M(III)0_3S_3)$ type complexes are developed, using $d^2sp^3 $hybrid orbitals of the central metal ions and the single basis set orbital of ligands. (M (III) =V (III), Cr (III), Mn (III), Fe (III), Co (III), Ru (III), Rh (III) and OS (III)). In this method the mixing coefficient of the valence basis sets for the central metal ion with the appropriate ligand orbitals is not required to be the same, differently from the molecular orbital method. The valence bond method is much more easier to calculate the dipole moments for octahedral complexes than the approximate molecular orbital method and the calculated results are also in the range of the experimental vaues.

  • PDF

Experimental and ab initio Computational Studies on Dimethyl-(4-{4-{3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine

  • Yuksektepe, Cigdem;Saracoglu, Hanife;Caliskan, Nezihe;Yilmaz, Ibrahim;Cukurovali, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3553-3560
    • /
    • 2010
  • A new hydrazone derivative compound has been synthesized and characterized by IR, $^1H$-NMR, $^{13}C$-NMR and UV-vis. spectroscopy techniques, elemental analysis and single-crystal X-ray diffraction (XRD). The new compound crystallizes in monoclinic space group C2/c. In addition to the crystal structure from X-ray experiment, the molecular geometry, vibrational frequencies and frontier molecular orbitals analysis of the title compound in the ground state have been calculated by using the HF/6-31G(d, p), B3LYP/6-311G(d, p) and B3LYP/6-31G(d, p) methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine conformational flexibility, molecular energy profile of (1) was obtained by semi-empirical (AM1) calculation with respect to a selected degree of torsional freedom, which was varied from $-180^{\circ}$ to $+180^{\circ}$ in steps of $10^{\circ}$. Molecular electrostatic potential of the compound was also performed by the theoretical method.

Structural Studies on Conjugated Oximes (Ⅲ). The Conformational Study of cis-2-Butenediadioxime by EHT (Conjugated Oxime 의 立體構造에 關한 硏究 (第3報). EHT 에 依한 cis-2-Butenedialdioxime 의 形態決定)

  • Hong Young-Suek;Park Byung-Kack
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.507-513
    • /
    • 1976
  • Conformation of cis-2-butenedialdioxime, a newly synthesized compound, was assigned by means of nuclearmagnetic resonance, extended Huckel molecular orbital method, and Pople's model of anisotropic effect. It was confirmed that two carbon-carbon single bonds are conrotatorily twisted from the molecular plane of six $sp^2$ orbitals of carbon-carbon double bond. The conformation of minimum energy is found to be twisted by$25^{\circ}C.$

  • PDF