• Title/Summary/Keyword: Molecular motion

Search Result 186, Processing Time 0.021 seconds

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

A Study on The Relationship between TSC Properties and Structural Changes of Epoxy Composites Materials (에폭시 복합체의 TSC특성파 구조변화사이의 상관성 연구)

  • 왕종배;박준범;박경원;신철기;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.75-79
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) method has been allied to study the influence of the structural change and interface on the electrical properties of epoxy composites. Three DGBA- MeTHPA matrix model samples mixed different ratios arts silica(SiO$_2$) filled sample and silaln treating-filled sample have been studied. Above room temperature, the relaxation mode ${\alpha}$ peak associated with T$\_$g/ has been located at 110$^{\circ}C$. Below glass transition temperature(T$\_$g/), three relaxation modes are observed in all samples : a ${\beta}$ mode situated at 10$^{\circ}C$, a ${\gamma}$ mode located at -40$^{\circ}C$ and a $\delta$mode appeared in -120$^{\circ}C$, which may be due to segmental motion, side chains, substitution and terminal groups. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the change of the molecular structure and their thermal motion are compared with the relaxation mode and conduction mechanism in TSC spectra through the dielectric properties and FTIR measurements.

  • PDF

Study of Molecular Reorientation in Liquid with Raman Spectroscopy (I). Anisotropic Rotation of CDC$l_3$ in Neat Liquid (용액 중에서의 분자의 재배치 운동에 관한 라만 분광법적 연구 (제1보). 순수 액체상태의 $CDCl_3$에 관한 비등방성 회전)

  • Myung Soo Kim;Kook Joe Shin
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.205-209
    • /
    • 1982
  • Anisotropic rotation of $CDCl_3$ in neat liquid is investigated by the analysis of ${\nu}_1$ band of Raman spectrum and the diffusion constant($D_{\perp}$) for the tumbling motion is obtained. The diffusion constant ($D_{II}$) for the spinning motion is obtained from the above $D_{\perp}$ value and the chlorine-35 nuclear quadrupole relaxation time. The diffusion constants thus obtained seem to agree very well with the ones obtained from $^2H$ and $^35C$l in NQR results within experimental errors. The data suggest fairly anisotropic character of reorientational motions in neat $CDCl_3$.

  • PDF

The Effect of Molecular Level Drawing-based Instruction (분자 수준에서의 그림 그리기를 활용한 수업 모형의 효과)

  • Noh, Tae-Hee;You, Ji-Yeon;Han, Jae-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.609-616
    • /
    • 2003
  • This study investigated the effects of 3-level systematic drawing upon students' achievement, conceptions, learning motivation, perceptions of involvement and attitudes toward science instruction. Two classes of 7th grade at a coed middle school were assigned to the control and the treatment groups. They were taught about change of states and motion of molecules for 8 class periods. Two-way ANCOVA results revealed that the scores of achievement test, a conceptions test, motivation and attitudes toward science instruction tests for the treatment group were significantly higher than those for the control group. But there was no difference in the scores of the perceptions of involvement test.

The Effect of Computer-Assisted Instruction Using Molecular-Level Animation in Middle School Science Class (중학교 과학수업에서 입자수준의 애니메이션을 이용한 컴퓨터 보조수업의 효과)

  • Noh, Tae-Hee;Cha, Jeong-Ho;Kim, Chang-Min;Choi, Yong-Nam
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • The effects of computer-assisted instruction (CAl) using molecular-level animation upon students' conceptions, attitudes toward science instruction, and learning motivation were investigated. Treatment and control groups (2 classes) were selected from a girls middle school in Seoul, and taught about the motion of molecule for 5 class hours. Before instruction, the short-version Group Assessment of Logical Thinking (GALT) and the Patterns of Adaptive Survey were administered, and the grade for the previous science course was obtained. The GALT score was used as a blocking variable, and the others as covariates. After the instructions, the researcher-made conceptions test, the test of attitudes toward science instruction, and the motivation questionnaire were administered. The perception questionnaire of CAl was also administered to the treatment group. Although more students in the CAl group had sound understanding about the motion of molecule, the scores of the conceptions test for the two groups were not significantly different at .05 level of significance. The students in the CAl group, however, were found to have more positive attitudes toward science instruction and learning motivation. In the perception questionnaire of CAl, most students in the treatment group exhibited positive attitudes toward the CAl. However, some students mentioned that they were disturbed by noisy environments, and that they could not understand some content presented. Educational implications are discussed.

  • PDF

Changes in Matrix Metalloproteinase and Tissue Inhibitors of Metalloproteinase in Patients with Rotator Cuff Tears

  • Kwon, Oh-Soo;Kim, Young-Yul;Ha, Ji Yoon;Kang, Han Bit
    • Clinics in Shoulder and Elbow
    • /
    • v.17 no.2
    • /
    • pp.64-67
    • /
    • 2014
  • Background: The purpose of this study was to determine whether in patients with rotator cuff tears a correlation exists between molecular changes and clinical parameters such as age, duration of symptom, range of motion, and tear size. Molecular changes of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) were assessed by measuring messenger RNA (mRNA) levels of the two proteins. Methods: The rotator cuff tissue from was obtained from the edge of a torn tendon revealed after debridement by a motorized shaver. Using the sample of rotator cuff tissue, the reverse transcription polymerase chain reaction was performed to quantify MMP-2 and TIMP-2 mRNA expression. To determine whether mRNA levels and the clinical variables, such as age, defect size, range of motion (ROM) of shoulder, and duration of symptoms, show any correlation, Spearman's correlation coefficients were used to test for significant differences. Results: There was an inverse correlation between the mRNA levels of MMP-2 and TIMP-2 from the torn rotator cuff tendons regardless of the clinical variables. However, comparison of mRNA levels versus clinical parameters such as age, defect size, range of motion and duration of symptoms revealed a number of findings. We found a significant correlation between age and mRNA levels of MMP-2 from torn cuffs (r = 0.513, p = 0.021). Further, we found a significant correlation between defect size in the full thickness tears and mRNA levels of MMP-2 (r = 0.454, p = 0.045). Conversely, no significant association between mRNA levels of MMP-2 and ROM or duration of symptom was found. Conclusions: Our results suggest that both MMP-2 and TIMP-2 may be involved in the disease process of rotator cuff tears. Although the level of mRNA expression of MMP-2 and TMP-2 remain constant in torn rotator cuffs irrespective of the clinical variables, their levels may be influenced by age and defect size, which could account to change in tendon degradation and the healing process.

COMBINED LATTICE-BOLTZMANN AND MOLECULAR-DYNAMICS SIMULATION OF BIOPOLYMER TRANSLOCATION THROUGH AN ARTIFICIAL NANO-PORE (나노 세공을 지나는 생체고분자 운동에 대한 격자-볼츠만과 분자동역학에 의한 수치해석)

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.97-102
    • /
    • 2009
  • Translocation of biopolymers such as DNA and RNA through a nano-pore is an important process in biotechnology applications. The translocation process of a biopolymer through an artificial nano-pore in the presence of a fluid solvent is simulated. The polymer motion is simulated by Langevin molecular dynamics (MD) techniques while the solvent dynamics are taken into account by lattice-Boltzmann method (LBM). The hydrodynamic interactions are considered explicitly by coupling the polymer and solvent through the frictional and the random forces. From simulation results we found that the hydrodynamic interactions between polymer and solvent speed-up the translocation process. The translocation time ${\tao}_T$ scales with the chain length N as ${{\tau}_T}^{\propto}N^{\alpha}$. The value of scaling exponents($\alpha$) obtained from our simulations are $1.29{\pm}0.03$ and $1.41{\pm}0.03$, with and without hydrodynamic interactions, respectively. Our simulation results are in good agreement with the experimentally observed value of $\alpha$, which is equal to $1.27{\pm}0.03$, particularly when hydrodynamic interaction effects are taken into account.

  • PDF

MOLECULAR DYNAMICS SIMULATION OF STRESS INDUCED GRAIN BOUNDARY MIGRATION DURING NANOINDENTATION EXPERIMENTS (나노압흔시 응력에 따른 결정립계거동의 분자역학모사)

  • Yoon, Jang-Hyeok;Kim, Seong-Jin;Chang, Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.39-39
    • /
    • 2003
  • Molecular dynamics (MD) simulation was performed to study the stress induced grain boundary migration caused by the interaction of dislocations with a gain boundary. The simulation was carried out in a Ni block (295020 atoms) with a ∑ = 5 (210) grain boundary and an embedded atom potential for Ni was used for the MD calculation. Stress was provided by indenting a diamond indenter and the interaction between Ni surface and diamond indenter was assumed to have a fully repulsive force to emulate a faction free surface. Results showed that the indentation nucleated perfect dislocations and the dislocations produced stacking faults in the form of a parallelepiped tube. The parallelepiped tube consisted of two pairs of parallel dislocations with Shockley partials and was produced successively during the penetration of the indenter. The dislocations propagated along the parallelepiped slip planes and fully merged onto the ∑ = 5 (210) grain boundary without emitting a dislocation on the other grain. The interaction of the dislocations with the grain boundary induced the migration of the grain boundary plane in the direction normal to the boundary plane and the migration continued as long as the dislocations merged onto the grain boundary plane. The detailed mechanism of the conservative motion of atoms at the gram boundary was associated with the geometric feature of the ∑ = 5 (210) grain boundary.

  • PDF

Dynamic analysis of magnetic head slider at ultra low clearance (마그네틱 헤드 슬라이더의 극소 공기막에 대한 동특성 해석)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1487-1494
    • /
    • 1990
  • In this paper the dynamic characteristics of self acting air lubricated slider bearing of hard disk/head system are investigated. The dynamic equations of magnetic head mechanism considering both parallel and pitch motion and the time dependent modified Reynolds equation are analyzed and the dynamic pressure distribution of air film is numerically calculated in frequency domain by small perturbation method and finite difference scheme with variable grid. The dynamic response of the slider spacing is obtained accordingly as the moving recording surface vibrates in parallel mode.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.